Все последние события из жизни вулканологов, сейсмологов
Японцев, Американцев и прочих несчастных, которым повезло родиться, жить
и умереть в зоне сейсмической активности

Стихия

град, Землетрясение, Извержения вулканов, ледоход, Ледяной дождь, Лесные пожары, Ливни, Наводнения, Огненный смерч, Паводок, Смерчи (Торнадо), Тектонический разлом, Ураганы (Тайфуны), Цунами

Вулканы

Авачинский, Алаид, Асама, Асо, Багана, Баурдарбунга, Безымянный, Бромо, Булусан, Везувий, Вениаминова, Вильяррика, Вольф, Вулкан Мерапи. Остров Ява. Индонезия. Извержений. Фото, фидео, вулкан Агунг, Вулкан Таранаки, Вулкан Хурикес. Боливия, Вулкана Богослов, Вулкана Эрта Але, Гамалама, Даллол, Дуконо, Жупановский, Ибу, Иджен, Йеллоустоун, Кальбуко, Камбальный, Кампи Флегрей, Карангетанг, Карымский, Катла, Килауэа, Кливленд, Ключевская Сопка, Колима, Копауэ, Котопахи, Кроноцкая Сопка, Локон, Майон, Масая, Мауна-Лоа, Меру, Михара, Момотомбо, Мон-Пеле, Мутновский, Невадо-дель-Руис, Невадо-дель-Уила, Невадос-де-Чильян, Ньирагонго, Онтаке, Павлова, Питон-де-ла-Фурнез, Сабанкая, Симмоэ, Тавурвур, Толбачик, Тунгурауа, Турриальба, Тятя, Убинас, Узон, Фогу, Фуэго, Шивелуч, Эйяфьятлайокудль, Эльдфедль, Этна, Ясур

Тайфуны

Тайфун Нору

Наводнения

Наводнение в Приморье

Районы вулканической активности

Вулканы Камчатки, Вулканы Мексики, Курилы

Грязевые вулканы и гейзеры

Локбатан

Природа

Вулканы, Изменение климата, Красота природы

Наука

Археология, Вулканология

Наша планета

Живая природа, Спасение животных

Ураганы

Тайфун Мэттью, Ураган Ирма, ураган Мария, Ураган Харви

Районы сейсмической активности

Землетрясение в Италии, Землетрясение в Китае, Землетрясение в Турции

Солнечная система

Венера, Марс, Меркурий, Планета Земля, Плутон, Сатурн, Юпитер

Космос

экзопланеты

Астрономические события

Метеориты, Суперлуние

Антропогенные факторы

Климатическое оружие

Землетрясения

Прогноз землетрясений

2018-06-28 09:18

Нейросеть разобралась в частичках вулканического пепла

Вулканология

Hino et al. / Scientific Reports 2018

Японские исследователи разработали алгоритм автоматической классификации мелких частичек вулканического пепла. Программа основана на работе сверточной нейронной сети и может определить одну из четырех возможных форм частицы с точностью до 92 процентов. Статья опубликована в Scientific Reports.

После извержения вулкана в воздухе и на земле оседает вулканический пепел — продукт измельчения магмы, диаметр отдельных частиц которого не превышает двух миллиметров. В зависимости от типа извержения форма этих частичек может быть разной: к примеру, при извержении магмы низкой вязкости частички вулканического пепла имеют вытянутую форму, похожу на каплю. Для анализа последствий извержения частички пепла изучают в лаборатории и классифицируют вручную: тем не менее, из-за того, что их форма не гомогенна, это может быть очень сложно.

Решить эту задачу с помощью современных информационных технологий решили ученые под руководством Хидейцу Хино (Hideitsu Hino) из Института статистической математики (Татикава, Япония). Они собрали образцы вулканического пепла трех типов извержений: магматического, фреатомагматического (извержения при взаимодействии магмы с водой) и бескорневого (извержение, которое происходит при контакте лавы с влажным грунтом около жерла). 

Исследователи выделили четыре формы частичек пепла (блочную, везикулярную, вытянутую и круглую) и обучили сверточную нейросеть их определять. Получая на вход изображение частички размером 50?50 пикселей, нейросеть анализирует распределение пикселей разных цветов, сравнивая их с изображениями частиц разной формы. 

Обученная нейросеть научилась автоматически определять форму частиц вулканического пепла с точностью до 92 процентов: в том случае, если нейросети не удавалось выдать точный ответ, определить его можно было вручную, сравнив вероятность попадания в определенный класс.

Распределение частичек разной формы вулканического пепла Фунабары, Нипаны и Миватн. Формы: B — блочный, V — везикулярный, E — зауженный, R — округлый

Hino et al. / Scientific Reports 2018

Затем ученые рассчитали вероятность появления частиц вулканической пыли разной формы после трех видов извержений и проанализировали пепел, собранный неподалеку от трех местностей: кратер Ниппана на вулканическом острове Миакедзима (фреатомагматическое извержение), Фунабара на острове Идзу (магматическое извержение) и вулканическое озера Миватн в Исландии (бескорневое извержение). Алгоритму удалось эффективно кластеризовать частицы по форме.

Hino et al. / Scientific Reports 2018

Авторы отмечают, что форма частиц вулканической пыли далека от идеала и для повышения качества распознавания необходимо в дальнейшем собрать масштабный датасет для улучшения работы нейросети.

При помощи сверточных нейросетей разработчики учат компьютер классифицировать формы и других объектов — к примеру, клеток: осенью прошлого года американские исследователи представили алгоритм автоматического определения формы эритроцитов для диагностики серповидноклеточной анемии.

Елизавета Ивтушок


Источник: nplus1.ru