Все последние события из жизни вулканологов, сейсмологов
Японцев, Американцев и прочих несчастных, которым повезло родиться, жить
и умереть в зоне сейсмической активности

Стихия

Землетрясение, Извержения вулканов, Ледяной дождь, Лесные пожары, Ливни, Наводнения, Огненный смерч, Паводок, Смерчи (Торнадо), Тайфуны, Тектонический разлом, Ураганы, Цунами, град, ледоход

Вулканы

Авачинский, Безымянный, Везувий, Даллол, Йеллоустоун, Кальбуко, Кампи Флегрей, Килауэа, Ключевская Сопка, Мауна-Лоа, Мерапи, Мутновский, Ньирагонго, Толбачик, Узон, Фаградальсфьядль, Фуэго, Хурикес, Шивелуч, Этна

Тайфуны

Тайфун Нору

Наводнения

Наводнение в Приморье

Районы вулканической активности

Вулканы Камчатки, Вулканы Мексики, Курилы

Грязевые вулканы и гейзеры

Локбатан

Природа

Вулканы, Изменение климата, Красота природы

Наука

Археология, Вулканология

Наша планета

Живая природа, Спасение животных

Ураганы

Тайфун Мэттью, Ураган Ирма, Ураган Харви, ураган Мария

Районы сейсмической активности

Землетрясение в Италии, Землетрясение в Китае, Землетрясение в Турции

Солнечная система

Венера, Марс, Меркурий, Планета Земля, Плутон, Сатурн, Юпитер

Космос

экзопланеты

Астрономические события

Лунное затмение, Метеориты, Противостояние Марса, Суперлуние

Антропогенные факторы

Климатическое оружие

Землетрясения

Прогноз землетрясений

2021-07-25 11:13

InSight измерил толщину марсианской коры

Марс видео

Планетологи, работающие с сейсмографом SEIS марсианской автоматической станции InSight, опубликовали новые результаты анализа собранных прибором данных. Ученым удалось оценить толщину коры Марса, определить размеры ядра планеты и выяснить, что кора во много раз более богата радиоактивными элементами, чем мантия планеты. Три статьи опубликованы в журнале Science.

InSight высадился на Марсе в конце 2018 года и занимается исследованиями внутреннего строения и климата планеты. Станция оснащена несколькими научными инструментами, однако наиболее важным из них является сейсмограф SEIS, который в марте 2019 года зарегистрировал первое марсотрясение и с тех пор обнаружил более тысячи отдельных сейсмических событий. Анализ того, как распространяются сейсмические волны внутри планеты ранее позволил ученым примерно понять, где пролегают границы раздела слоев Марса и каков размер его ядра.

В трех новых работах планетологи из международной команды InSight, работающие с данными, получаемыми SEIS, опубликовали результаты исследований внутренней структуры Марса. Амир Кхан (Amir Khan) из Института геофизики в Цюрихе и его коллеги использовали прямые (P и S) и отраженные от поверхности (PP, PPP, SS и SSS) сейсмические волны, возникшие в ходе восьми марсотрясений, для изучения структуры планеты до глубины 800 километров. Ученые определили, что литосфера Марса пролегает до глубин 400-600 километров, что делает ее толще, чем в случае Земли. При этом, по сравнению с мантией кора Марса в 13-20 раз более богата радиоактивными элементами, распад которых сильно нагревает этот слой. Эти оценки оказались больше, чем те, которые были получены во время исследований поверхности Марса орбитальными аппаратами.

Бриджит Кнапмайер-Эндрун (Brigitte Knapmeyer-Endrun) из Института геологии и минералогии Кельнского университета и ее коллеги использовали сейсмические события для оценки толщины и слоистости коры Марса в месте высадки станции. Ученые пришли к выводу, что могут существовать две модели коры: тонкая и толстая. В случае тонкой модели толщина коры составляет от 15 до 25 километров и в ней можно выделить два слоя. В случае толстой коры ее толщина будет составлять от 27 до 47 километров и в ней можно выделить три слоя.

Если рассматривать всю планету целиком, то в рамках тонкой модели средняя толщина коры составляет от 24 до 38 километров, а ее максимально допустимая плотность — 2850 килограмм на кубический метр. В случае толстой модели средняя толщина коры составляет от 39 до 72 километров, а ее максимально допустимая плотность — 3100 килограмм на кубический метр. Для обеих моделей плотность коры оказалась существенно меньше, чем можно было бы ожидать исходя из свойств поверхностного слоя Марса.

Наконец, (Simon C. St?hler) из Института геофизики в Цюрихе и его коллеги использовали сейсмические волны, чтобы уточнить границу между мантией Марса и его жидкометаллическим ядром. Оказалось, что радиус ядра составляет 1830±40 километров, а его средняя плотность равна от 5,7 до 6,3 грамма на кубический сантиметр, что требует значительного количества легких элементов, растворенных в железо-никелевом ядре, в частности серы (10-15 процентов от общей массы), кислорода (<5 процентов от общей массы) и водорода и углерода (<1 процентов от общей массы).

Ученые пришли к выводу, что мантия Марса по минералогическому составу может быть аналогична верхней мантии Земли, при этом у планеты отсутствует относительно плотная и теплоизолирующая нижняя мантия. Это соответствует модели, в которой Марс обладал глобальным магнитным полем, генерируемым за счет динамо-эффекта, 4,5-3,7 миллиардов лет назад, а затем относительно быстро остыл, из-за чего сейчас можно наблюдать лишь намагниченные участки коры планеты.