8 лет назад, сгорев в атмосфере Сатурна, космический аппарат “Кассини” завершил своё почти 20-летнее путешествие от Земли до Сатурна.
Дважды продлённая миссия этого космического аппарата была направлена на систему Сатурна: сам газовый гигант, его кольца и спутники.
Собственно, это был первый аппарат, что вышел на орбиту Сатурна и изучал его не на пролёте, но целенаправленно. Изучение на протяжении многих лет позволило совершить куда больше научных открытий, чем ранние миссии Пионеров и Вояджеров. Самые яркие прорывы, которые можно назвать уже сейчас - это открытие водяных гейзеров на Энцеладе - одном из крошечных ледяных спутников Сатурна (фотография 2, далее в фигурных скобках), и посадка зонда на поверхность Титана {3} - крупнейшего спутника Сатурна с плотной атмосферой и, как выяснилось примерно в то же время, вполне себе жидкими морями и реками из жидких углеводоров {4}. В некотором роде, открытия Кассини-Гюйгенса позволили переписать учебники по астрономии, давая даже немного работы астробиологам в их нелёгком поиске внеземной жизни.
В серии постов я предлагаю по полочкам разобрать шаги, сделавшие эту миссию возможной. Поначалу мы разберём вопросы, возникавшие ещё на Земле, при конструировании аппарата, а затем двинемся в космические дали.
Сейчас я хочу ввести вас в вопрос обеспечения электроэнергией данного аппарата, как одного из фундаментальных вопросов автономной миссии.
Итак, давайте внятно определимся, каковы были задачи для аппарата.
Если совсем кратко, то было необходимо донести большое количество научного оборудования и спускаемый зонд до системы Сатурна, питать весь аппарат около десятка-двух лет, отправлять научные данные на Землю, уметь маневрировать для более полного осмотра системы Сатурна, и выполнить ещё сонм чуть менее заметных задач, не вошедших в этот список - и всё это обладая знаниями и технологиями из 90-ых. Задач много, и каждая требует пристальнейшего внимания - любая поломка может привести к преждевременной гибели миссии, и мы не получим ничего с тех усилий, что уже были вложены в аппарат…
С энергией в космосе вообще сложновато, т.к.половина способов получения энергии на таких масштабах времени без регулярного техобслуживания у нас, оказывается не работает: большая часть нынешних способов получения электричества заключается в использовании некоторого явления, что должно вращать турбину. Однако обычно после запуска с аппаратом невозможно что-либо сделать - разве что обновить программное обеспечение. Поэтому от движущихся частей на космических аппаратах пытаются избавляться - любой износ, поломка, смещение частей аппарата, воздействие полей могут вызвать поломку этой части и, вероятно, скорое прекращение миссии. Выработка энергии - невероятно важная задача для любой космической миссии, и здесь обходятся обычно двумя решениями: солнечные панели и РИТЭГи - Радиоизотопные Термоэлектрические Генераторы.
Оба решения имеют свои особенности в работе, свои преимущества и недостатки, особо проявляемые в контексте временного периода.
Солнечные панели, очевидно, требуют солнца для работы, буквально преобразуя попадающий на них свет в напряжение между пластинами, создавая ток. Но есть в солнечных батареях парочка недостатков, сильно проявляющих себя в условиях, где мы хотим их использовать. Для начала, солнечные батареи сами по себе, на самом деле, малоэффективны - даже сейчас КПД в 20% считается большим. Этот минус усугубляется и пунктом нашего назначения, в который мы отправляем наш Кассини-Гюйгенс - в 10 раз дальше, чем уже сейчас (а значит солнечного света будет в 100 раз меньше на ту же площадь в идеальном случае) и ужасаемся площади, необходимой для покрытия наших хотелок в энергии. Даже если предположить, что мы сможем обеспечить необходимую площадь для перекрытия энергетических нужд солнечными панелями (т.е. иметь примерно в 100 раз большие солнечные панели, чем около Земли), приходят обычные космические проблемы: габариты и масса.
С учётом того, что солнечные панели не абсолютно плоские и вполне себе весомые, и единственный способ их упаковки заключается в складывании (что требует дополнительных поддерживающих ферм, огромного количества специальных шарниров, специальных соединений и прочих сложностей при больших рисках, связанных с отсутствием техобслуживания), такой аппарат банально может иметь слишком большие массу и объёмы, чтобы довести это дело до точки назначения в виде Сатурна. И опять-таки, если решим проблему доставки аппарата с такими гигантскими панелями, столкнёмся с комплексом проблем от огромной площади аппарата: ограниченная манёвренность вследствие низкой жёсткости всей конструкции, микрометеоритная бомбардировка, что особо актуально для Сатурна - микрочастицы пыли далеко не полностью собраны в кольца - и далее по списку.
РИТЭГи же - несколько иная тема. Радиоизотопные Термоэлектрические Генераторы преобразуют тепло, выделяющееся в большом количестве от распада радиоактивных элементов, в электричество. Замечательное решение для миссий, что не требуют сильно большого количества энергии и отправляются в далёкий космос. Нам парочки таких хватит, пусть они тяжёлые и жутко дорогие.
Если бы не совсем недавно произошедшие с разницей в 3 месяца сначала катастрофа шаттла Челленджер, а потом - авария на Чернобыльской АЭС, проблем с РИТЭГами бы вообще не было. Однако, на фоне развившейся радиофобии, полёты аппаратов, содержащих любые потенциально токсические вещества - в особенности, радиоактивные - встречали волны протестов. Тем более, что уже существовал аппарат, что полетел с РИТЭГом и вернул в земную атмосферу около килограмма распылённого ядерного топлива. Авария аппарата Transit 5BN-3 в 1964, что шёл с РИТЭГом SNAP-9A {5} была одним из основных аргументов в протестах.
Тем не менее, уже с 70-ых годов в NASA разрабатывался особый тип РИТЭГов - GPHS {6}. Если коротко, то ядерное топливо содержалось в особом контейнере из иридия, способном пережить взрыв ракеты на старте или в воздухе, огромные нагрузки - в общем, давно был рассчитан на худший вариант развития событий, и потому запуск был разрешён даже на волне радиофобии. Протесты не могли пересилить многолетние разработки и испытания…
В общем, поставить радиоактивную батарейку разрешили - первый вопрос решён.
Однако просто поставить РИТЭГи на случайное место на аппарате нельзя. Всё-таки штука горячая, особенно ближе к старту, да ещё и фонит немного - аппарату требуется смотреть на магнитные поля вокруг, обследовать радиационный фон.. В общем, расположение РИТЭГов - ещё одна задачка со звёздочкой для разбора.
Но об этом уже в следующий раз!
Фотокарточки:
2 - фотография Энцелада с теневой стороны, в нижней части фотографии явно видны гейзеры, оставшиеся от них облака льда, содержащие в себе следы органики
3 - сопоставление фотографий при пролётах аппаратом Кассини Титана с радиокартографированием - видно изменение береговой линии, притом точный источник явления неизвестен до конца)
4 - единственная фотография с поверхности Титана, переданная зондом Гюйгенс. Для облегчения восприятия была повышена контрастность фотографии
5 - РИТЭГ SNAP 9A, вызвавший радиационное загрязнение атмосферы при неудачной попытке вывода на орбиту очередного спутника Transit'а. Большая часть радиационного загрязнения пришлась на южное полушарие
6 - РИТЭГ GPHS, работавший на Кассини. Аналогичные ему по строению летали на аппаратах Galileo, Ulysses, New Horizons. Эта махина весит почти полцентнера и содержит в себе около 11 килограмм диоксида плутония-238.