Все последние события из жизни вулканологов, сейсмологов
Японцев, Американцев и прочих несчастных, которым повезло родиться, жить
и умереть в зоне сейсмической активности

Стихия

Землетрясение, Извержения вулканов, Ледяной дождь, Лесные пожары, Ливни, Наводнения, Огненный смерч, Паводок, Смерчи (Торнадо), Тайфуны, Тектонический разлом, Ураганы, Цунами, град, ледоход

Вулканы

Авачинский, Везувий, Йеллоустоун, Кальбуко, Кампи Флегрей, Карымский, Килауэа, Ключевская Сопка, Майон, Мерапи, Мутновский, Невадо-дель-Руис, Толбачик, Убинас, Узон, Фаградальсфьядль, Фуэго, Хурикес, Шивелуч, Этна

Тайфуны

Тайфун Нору

Наводнения

Наводнение в Приморье

Районы вулканической активности

Вулканы Камчатки, Вулканы Мексики, Курилы

Грязевые вулканы и гейзеры

Локбатан

Природа

Вулканы, Изменение климата, Красота природы

Наука

Археология, Вулканология

Наша планета

Живая природа, Спасение животных

Ураганы

Тайфун Мэттью, Ураган Ирма, Ураган Харви, ураган Мария

Районы сейсмической активности

Землетрясение в Италии, Землетрясение в Китае, Землетрясение в Турции

Солнечная система

Венера, Марс, Меркурий, Планета Земля, Плутон, Сатурн, Юпитер

Космос

экзопланеты

Астрономические события

Лунное затмение, Метеориты, Противостояние Марса, Суперлуние

Антропогенные факторы

Климатическое оружие

Землетрясения

Прогноз землетрясений

2023-09-21 11:15

30 лет тому вперед: какие открытия нас ждут (Сергей Попов)

Тридцать лет — это примерно миллиард секунд. Примерно миллиард ударов сердца.

Давайте посмотрим на тридцать лет назад. В то время мы еще не открыли ни одной планеты у нормальных звезд, похожих на Солнце, и не знали о том, что наша Вселенная расширяется всё быстрее и быстрее. Первое из двух открытий можно было предсказать, второе — нет. Первое явилось итогом целенаправленных усилий по поиску экзопланет, второе стало для большинства ученых неожиданным результатом исследований в области внегалактической астрономии и космологии. Пожалуй, это были два самых главных открытия в астрономии с 1960-х годов. Значит, в современной науке какие-то крупные достижения мы можем предвидеть, а какие-то — нет. Будем считать, что бокал наполовину полон и попробуем задуматься, что мы узнаем о Вселенной в ближайшие тридцать лет.

Почему вообще можно предсказывать научные открытия? Дело в том, что многие важнейшие результаты получают на больших установках (телескопах, космических аппаратах и т. д.), ввод в строй которых распланирован иногда на десятки лет вперед. Давайте посмотрим, какие важные астрономические инструменты начнут работать в ближайшие лет двадцать и какие космические проекты в Солнечной системе можно будет реализовать. А по ходу обсуждения поймем, на какие открытия мы можем рассчитывать.

Сейчас на гало-орбите в точке Лагранжа L2 находится космический телескоп «Джеймс Уэбб» (JWST). Можно рассчитывать, что инструмент проработает как минимум до начала 2040-х. За это время будет сделано много интересных открытий. В первую очередь ожидается, что они будут связаны с историей формирования галактик, начиная с самых первых, и с экзопланетами. Первые результаты, полученные на этом инструменте, дают все основания для оптимистичных прогнозов. Таким образом, через тридцать лет мы будем хорошо представлять, как формировались галактики, их группы и скопления.

Для исследований экзопланет также важны крупные наземные телескопы. В конце 2020-х — начале 2030-х начнет работу новое поколение супертелескопов диаметром 30–40 м. Первым из них станет 40-метровый Extremely Large Telescope (ELT) Европейской южной обсерватории. Он заработает в 2028 году. Вместе с JWST эти инструменты позволят начать изучение атмосфер потенциально обитаемых планет, обращающихся вокруг красных карликов. Можно надеяться, что через тридцать лет мы будем знать планеты земного типа в зонах обитаемости с атмосферными характеристиками, говорящими о наличии жизни. Это станет важнейшим прорывом в вопросе поиска жизни во Вселенной.

Кроме того, в ближайшие годы будет открыто множество новых экзопланет разных типов. Благодаря таким аппаратам Европейского космического агентства, как Gaia (он успешно заканчивает свою миссию, но полная обработка данных потребует нескольких лет) и PLATO (ожидаемый запуск — в 2027 году) уже к концу 2020-х счет пойдет на десятки тысяч. Это позволит в деталях понять, как формируются планеты и их системы.

Но жизнь можно искать не только на далеких планетах. В 2030 году к спутнику Юпитера Европе прилетит аппарат NASA Europa Clipper. Это будет первая межпланетная станция, предназначенная для детального исследования небесного тела, считающегося кандидатом номер один в смысле поиска жизни в Солнечной системе. Можно быть уверенным, что до 2053 года к Европе будут отправлены более совершенные аппараты, которые смогут детально исследовать состав подледного океана этого спутника. Кроме того, наверняка будут отправлены межпланетные станции для изучения двух спутников Сатурна — Энцелада и Титана — они также считаются кандидатами в обитаемые миры (причем, если на Титане есть жизнь, то она принципиально отличается от земной!).

Безусловно, будет продолжаться изучение Марса. За тридцать лет мы существенно продвинемся в исследованиях этой планеты. Сейчас есть все основания утверждать, что в далеком прошлом климат на Марсе был куда мягче, а значит, есть надежда, что тогда на Красной планете успела появиться жизнь. Тридцать лет — достаточный срок, чтобы разобраться в этом вопросе.

Кроме того, в непосредственной близости от нас есть тела, номинально не принадлежащие Солнечной системе. Речь идет о межзвездных кометах и астероидах, пролетающих мимо нас в своем странствии по Галактике. Пока было обнаружено по одному объекту каждого из типов: межзвездный астероид Оумуамуа и комета Борисова. Уже в следующем году в Чили заработает очень важный для всей астрономии инструмент — американский Большой обзорный телескоп (Large Synoptic Survey Telescope, LSST) Обсерватории имени Веры Рубин. Кроме прочего, он позволит открывать большое количество межзвездных объектов в Солнечной системе. Причем мы сможем обнаруживать их еще на подлете. В связи с этим активно обсуждаются проекты «перехвата» таких тел с помощью межпланетных аппаратов для их детального изучения. Вдобавок новый телескоп должен поставить точку в вопросе о существовании еще одного крупного тела в Солнечной системе — девятой планеты.

JWST (NASA)JWST (NASA)
JWST (NASA)

JWST проработает еще лет двадцать. Тем не менее в NASA уже несколько лет активно обсуждается, какой инструмент придет ему на смену. Окончательное решение пока не принято, а потому разрабатывается сразу несколько проектов. Скорее всего, новый телескоп, качественно превосходящий JWST по своим параметрам, будет работать как минимум в оптическом и инфракрасном диапазоне. А может быть, еще и в ультрафиолете. У такого инструмента будет много задач, но среди них точно окажется наблюдение самых первых звезд во Вселенной, которые пока не удается увидеть, и детальное изучение атмосфер «двойников» Земли. Пожалуй, это одна из самых амбициозных (но конкретных и достижимых!) целей как раз на границе рассматриваемого нами тридцатилетнего периода.

Столько всего интересного, а мы даже еще ни разу не упомянули черные дыры. Пора! В 2037 году должен начать работу космический лазерный интерферометр eLISA. Это проект Европейского космического агентства. Его основная задача — наблюдение гравитационных волн от сверхмассивных черных дыр. Кроме того, примерно в такие же сроки (вероятно, немногим позже, чем eLISA) должен быть реализован аналогичный (но не идентичный!) китайский проект. Такие инструменты должны помочь узнать много нового о сверхмассивных черных дырах, об их формировании и эволюции.

Но, как мы знаем, сверхмассивные черные дыры можно изучать разными способами. Всем памятны так называемые снимки черных дыр в галактике М87 и в центре нашей галактики, полученные Телескопом горизонта событий (EHT). Это система крупных наземных радиотелескопов, разбросанных по всему земному шару. Обычно эти инструменты, принадлежащие самым разным странам и организациям, решают независимые задачи, но иногда проводят совместные наблюдения. И тогда это «телескоп размером с Землю» — EHT! Эта система будет расширяться и совершенствоваться. В ближайшие тридцать лет будут получены изображения окрестностей еще нескольких черных дыр, а качество картинки при этом существенно возрастет. Всё это крайне важно для изучения природы гравитации.

Не будем забывать и про черные дыры звездных масс. Сейчас начался четвертый сеанс научных наблюдений на наземных гравитационно-волновых детекторах. В этот раз будут работать сразу четыре установки: две антенны LIGO в США, европейская Virgo и японская KAGRA. На ближайшие лет десять запланированы еще несколько сеансов. Причем апгрейды позволят постоянно увеличивать чувствительность установок. Вдобавок к пятому сеансу может присоединиться и пятая установка — еще одна антенна LIGO в Индии. Кроме слияний черных дыр, такие инструменты регистрируют и слияния с участием нейтронных звезд. Можно надеяться, что в ближайшие тридцать лет благодаря наблюдениям таких событий мы наконец-то поймем, как ведет себя вещество в недрах этих объектов. А это важно не только для астрономии, но и для ядерной физики.

На масштабе нескольких десятилетий ожидается создание гравитационно-волновых антенн нового поколения (нельзя же ведь вечно апгрейдить уже существующие инструменты). Такие проекты разрабатываются в Европе (Einstein Telescope) и США (Cosmic Explorer). Среди многих задач, которые будут решать эти приборы, выделяется исследование областей в непосредственной близости от горизонта событий.

Перечисление ожидаемых суперустановок можно завершить мегапроектом системы радиотелескопов Square Kilometer Array (SKA). Половина установки будет находиться в Австралии, половина — в Южной Африке. Сейчас идут активные работы по ее строительству. В конце 2020-х система должна начать наблюдения. У такого проекта множество разнообразных задач. Среди них и космология, и изучение разных источников, связанных с нейтронными звездами (в том числе и удивительных быстрых радиовсплесков), и многое другое. Ну и, кто знает, может быть, SKA зарегистрирует сигналы внеземного разума (здесь автор хочет поставить смайлик).

Разумеется, не все крупные проекты попали в наш список. Например, на 2027 год агентством NASA запланирован запуск космического телескопа «Нэнси Грейс Роман», а в 2029 году Европейское космическое агентство планирует старт спутника Ariel для изучения атмосфер экзопланет. Начинается сооружение крупнейшего комплекса в наземной гамма-астрономии — это проект Cherenkov Telescope Array. Планируется сооружение низкочастотных радиотелескопов на обратной стороне Луны. Обсуждается миссия к Венере для изучения ее атмосферы и проверки гипотезы о присутствии там жизни. Перечень можно продолжить. И все эти инструменты могут дать новые интересные (и неожиданные!) открытия.

В заключение назовем еще три результата, которые могут быть получены в ближайшие тридцать лет. Трудно сказать, какому инструменту повезет (и повезет ли вообще хоть кому-то), но если такие результаты удастся получить, то это станет важнейшим этапом в понимании того, как устроена Вселенная на самом фундаментальном уровне.

Во-первых, это регистрация частиц темного вещества. В настоящее время мы думаем, что примерно четверть плотности Вселенной связана с загадочным компонентом, которому нет места в Стандартной модели элементарных частиц. Этого темного вещества должно быть в несколько раз больше, чем обычного, состоящего из протонов, нейтронов и электронов. Темное вещество — это тоже какие-то частицы. Но какие? У теоретиков есть огромное количество идей по этому поводу, а экспериментаторы и наблюдатели уже десятки лет безуспешно пытаются узнать хоть что-то про эти частицы. Есть множество установок в подземных лабораториях, на которых пытаются зафиксировать взаимодействие неуловимых частиц с обычным веществом. Пока безуспешно. Может быть, в ближайшие десятилетия кому-нибудь улыбнется удача. Или, возможно, астрономы смогут получить что-то конкретное, например надежно зарегистрировать сигналы, связанные с аннигиляцией этих частиц.

Во-вторых, было бы крайне интересно зафиксировать процесс испарения черных дыр или хотя бы достоверно обнаружить следствия этого процесса. Испарение черных дыр было предсказано Стивеном Хокингом в 1975 году. Но спустя почти полвека после публикации его фундаментальной статьи мы так и не можем увидеть, как черные дыры исчезают в яркой вспышке. Это всё обещает существенное продвижение в построении моделей квантовой гравитации.

Наконец, есть надежда, что детальное изучение реликтового излучения — микроволнового фона, оставшегося от эпохи горячей Вселенной, — позволит увидеть «отпечатки» стадии первичной инфляции. Современные космологические теории предсказывают, что рождение нашей Вселенной началось с крайне недолгой фазы, когда ее объем с огромной скоростью многократно возрос. И только потом Вселенная заполнилась горячим и плотным веществом — т. е. произошел Большой взрыв. Есть довольно оптимистичные предсказания относительно величины искомого эффекта, и кажется, что обнаружить необходимые детали в реликтовом излучении можно будет со следующим поколением установок в ближайшие 10–20 лет.

Темпы научного прогресса в астрономии остаются очень высокими. Новые технологии позволяют создавать всё более чувствительные приборы для изучения окружающего нас космоса. Так что нас ждет много открытий. И, конечно, самые интересные из них — это те, которые не удалось предсказать заранее.

Сергей Попов, профессор РАН
Abdus Salam International Center for Theoretical Physics (Trieste, Italy)


Источник: www.trv-science.ru