Все последние события из жизни вулканологов, сейсмологов
Японцев, Американцев и прочих несчастных, которым повезло родиться, жить
и умереть в зоне сейсмической активности

Стихия

Землетрясение, Извержения вулканов, Ледяной дождь, Лесные пожары, Ливни, Наводнения, Огненный смерч, Паводок, Смерчи (Торнадо), Тайфуны, Тектонический разлом, Ураганы, Цунами, град, ледоход

Вулканы

Авачинский, Безымянный, Везувий, Даллол, Йеллоустоун, Кальбуко, Кампи Флегрей, Килауэа, Ключевская Сопка, Мауна-Лоа, Мерапи, Мутновский, Ньирагонго, Толбачик, Узон, Фаградальсфьядль, Фуэго, Хурикес, Шивелуч, Этна

Тайфуны

Тайфун Нору

Наводнения

Наводнение в Приморье

Районы вулканической активности

Вулканы Камчатки, Вулканы Мексики, Курилы

Грязевые вулканы и гейзеры

Локбатан

Природа

Вулканы, Изменение климата, Красота природы

Наука

Археология, Вулканология

Наша планета

Живая природа, Спасение животных

Ураганы

Тайфун Мэттью, Ураган Ирма, Ураган Харви, ураган Мария

Районы сейсмической активности

Землетрясение в Италии, Землетрясение в Китае, Землетрясение в Турции

Солнечная система

Венера, Марс, Меркурий, Планета Земля, Плутон, Сатурн, Юпитер

Космос

экзопланеты

Астрономические события

Лунное затмение, Метеориты, Противостояние Марса, Суперлуние

Антропогенные факторы

Климатическое оружие

Землетрясения

Прогноз землетрясений

2021-09-14 09:52

У вас гигантская кость летает в космосе

У вас гигантская кость летает в космосе. С двумя спутниками

Группа астрономов на телескопе VLT Европейской Южной обсерватории получила самое чёткое и детальное на сегодняшний день изображение очень необычного астероида Клеопатра. Наблюдения позволили с большей, чем прежде, точностью определить границы формы и массы необычного астероида, напоминающего очертаниями собачью косточку. Исследование проливает свет на то, как образовались этот астероид и два его спутника.

“Клеопатра – поистине уникальный объект в Солнечной системе”, — говорит Франк Марши из Института SETI в Маунтин Вью, руководитель исследований астероида. “В науке часто бывает, что изучение странных исключений из правил приводит к значительному прогрессу. Я думаю, с Клеопатрой дело обстоит именно так. Изучение этой сложной кратной системы астероидов может помочь нам узнать больше о Солнечной системе в целом.”

Орбита Клеопатры лежит в поясе астероидов между Марсом и Юпитером. Астрономы прозвали этот астероид «собачьей косточкой» после того, как около 20 лет назад радарные наблюдения показали, что его форма образована двумя округлостями, соединёнными толстой «шейкой». В 2008 г. Марши и его сотрудники обнаружили, что вокруг Клеопатры обращаются две «луны», названные Алекс-Гелиосом и Клео-Селеной – в честь детей египетской царицы.

Чтобы узнать больше о Клеопатре, Марши и его группа воспользовались снимками астероида, полученными в разное время между 2017 и 2019 гг. спектрополяриметром для высококонтрастных исследований экзопланет SPHERE, смонтированным на телескопе VLT. Так как астероид вращается, эти снимки позволили наблюдать его под разными углами; на основе полученного материала были построены наиболее точные на сегодняшний день трехмерные модели формы астероида. Из этих моделей были выведены ограничения на форму «косточки» и на объем астероида: оказалось, что один из округлых концов больше другого, а длина астероида равна примерно 270 километров – около половины ширины пролива Ламанш.

Во второй работе, выполненной под руководством Мирослава Брожа, исследователи сообщают, как наблюдения с приёмником SPHERE позволили им точнее определить орбиты двух спутников Клеопатры. Предыдущие исследования дали оценки параметров их орбит, однако, новые наблюдения на телескопе VLT показали, что истинные положения «лун» отличаются от предвычисленных на основании этих оценок.

“С этим вопросом надо было разобраться”, — говорит Брож. “Ведь если орбиты спутников определены неверно, то неверно и всё остальное, в том числе и масса Клеопатры”. На основе новых наблюдений и изощрённого моделирования группа сумела точно описать влияние гравитации Клеопатры на движения её спутников и определить сложные орбиты Алекс-Гелиоса и Клео-Селены. Это позволило астрономам вычислить массу астероида, которая оказалась на 35% ниже предыдущих оценок.

Объединив новые оценки объёма и массы астероида, астрономы сумели вычислить новое значение его плотности. Она оказалась меньше половины плотности железа – ниже, чем считалось прежде. Заново определённая плотность астероида составляет 3,4 грамма в кубическом сантиметре. Прежде считалось, что средняя плотность Клеопатры около 4,5 грамма в кубическом сантиметре.

Низкая плотность Клеопатры, при том, что астероид предположительно имеет металлический состав, указывает на его пористую структуру – возможно, он мало чем отличается от «кучи булыжников». Это означает, что астероид, вероятно, образовался посредством повторной аккумуляции материала после гигантского столкновения.

Пористая структура Клеопатры и характер вращения астероида указывают и на возможный способ образования двух его спутников. Астероид вращается почти с критической скоростью, выше которой он уже начал бы разваливаться на части, и даже малые удары могут отрывать мелкие фрагменты от его поверхности. Марши и его коллеги считают, что из таких обломков и могли постепенно образоваться Алекс-Гелиос и Клео-Селена. Выходит, что Клеопатра и вправду породила свои «луны».

Новые изображения Клеопатры и далеко идущие выводы, которые из этих наблюдений вытекают, стали возможными только благодаря сверхсовременной системе адаптивной оптики, используемой на телескопе VLT в пустыне Атакама. Адаптивная оптика помогает корректировать искажения изображений, вызываемые земной атмосферой — их размывание и смещения, которые представляются нашему глазу как мерцания и дрожания звёзд. Благодаря этой коррекции приёмник SPHERE смог построить изображение Клеопатры, которая в момент наибольшего сближения с Землёй отстоит от неё на 200 миллионов километров — на таком расстоянии видимый угловой размер астероида на небе такой же, как у мяча для гольфа на расстоянии в 40 километров.

Строящийся телескоп ELT, который тоже будет оснащён совершенными системами адаптивной оптики, будет идеальным инструментом для получения изображений удалённых астероидов, таких, как Клеопатра. “Я с огромным нетерпением жду возможности направить ELT на Клеопатру, чтобы поискать вокруг неё новые спутники и определить их орбиты”, — говорит Марши.