Все последние события из жизни вулканологов, сейсмологов
Японцев, Американцев и прочих несчастных, которым повезло родиться, жить
и умереть в зоне сейсмической активности

Стихия

Землетрясение, Извержения вулканов, Ледяной дождь, Лесные пожары, Ливни, Наводнения, Огненный смерч, Паводок, Смерчи (Торнадо), Тайфуны, Тектонический разлом, Ураганы, Цунами, град, ледоход

Вулканы

Авачинский, Безымянный, Бромо, Везувий, Даллол, Иджен, Йеллоустоун, Кальбуко, Карымский, Килауэа, Ключевская Сопка, Мерапи, Мутновский, Невадос-де-Чильян, Ньирагонго, Толбачик, Фуэго, Хурикес, Шивелуч, Этна

Тайфуны

Тайфун Нору

Наводнения

Наводнение в Приморье

Районы вулканической активности

Вулканы Камчатки, Вулканы Мексики, Курилы

Грязевые вулканы и гейзеры

Локбатан

Природа

Вулканы, Изменение климата, Красота природы

Наука

Археология, Вулканология

Наша планета

Живая природа, Спасение животных

Ураганы

Тайфун Мэттью, Ураган Ирма, Ураган Харви, ураган Мария

Районы сейсмической активности

Землетрясение в Италии, Землетрясение в Китае, Землетрясение в Турции

Солнечная система

Венера, Марс, Меркурий, Планета Земля, Плутон, Сатурн, Юпитер

Космос

экзопланеты

Астрономические события

Лунное затмение, Метеориты, Противостояние Марса, Суперлуние

Антропогенные факторы

Климатическое оружие

Землетрясения

Прогноз землетрясений

2021-03-07 12:44

Прекрасное далеко: что дадут ракеты на ядерном топливе

Мечтая о Марсе, да и не только о нем, человечество создает новые ракеты с реактивными двигателями. Но вы можете быть удивлены, узнав, что современные ракеты летают не намного быстрее, чем ракеты прошлого.

Есть много причин гнаться за скоростью полетов. Первый шаг любого космического путешествия — выход на орбиту с помощью реактивных двигателей, у которых пока нет альтернатив. Когда же корабль попадает в космос, все становится гораздо интереснее — ему нужно дополнительное ускорение. Вот тут ядерные системы и вступят в игру. Если космонавты хотят исследовать что-то более отдаленное, чем Луна и, возможно, Марс, им нужно будет двигаться очень и очень быстро.

Есть две причины стремиться к этому: безопасность и время. По пути на Марс люди будут подвергаться воздействию очень высоких уровней радиации, что может вызвать серьезные проблемы со здоровьем. Радиационная защита весит немало, и чем дальше путь, тем массивнее она должна быть. Лучший способ уменьшить радиационное облучение — просто быстрее добраться до места назначения.

Но безопасность человека — не единственное преимущество, которое дает скорость. По мере того, как мы исследуем глубины космоса, появляется необходимость получать данные о нем как можно быстрее. Нам уже некогда ждать по 10 лет, пока аппараты доберутся до окраин Солнечной системы. Зонду Voyager 2 потребовалось 12 лет, чтобы долететь до Нептуна.

Мечтая о Марсе, да и не только о нем, человечество создает новые ракеты с реактивными двигателями. Но вы можете быть удивлены, узнав, что современные ракеты летают не намного быстрее, чем ракеты прошлого.

Есть много причин гнаться за скоростью полетов. Первый шаг любого космического путешествия — выход на орбиту с помощью реактивных двигателей, у которых пока нет альтернатив. Когда же корабль попадает в космос, все становится гораздо интереснее — ему нужно дополнительное ускорение. Вот тут ядерные системы и вступят в игру. Если космонавты хотят исследовать что-то более отдаленное, чем Луна и, возможно, Марс, им нужно будет двигаться очень и очень быстро.

Есть две причины стремиться к этому: безопасность и время. По пути на Марс люди будут подвергаться воздействию очень высоких уровней радиации, что может вызвать серьезные проблемы со здоровьем. Радиационная защита весит немало, и чем дальше путь, тем массивнее она должна быть. Лучший способ уменьшить радиационное облучение — просто быстрее добраться до места назначения.

Но безопасность человека — не единственное преимущество, которое дает скорость. По мере того, как мы исследуем глубины космоса, появляется необходимость получать данные о нем как можно быстрее. Нам уже некогда ждать по 10 лет, пока аппараты доберутся до окраин Солнечной системы. Зонду Voyager 2 потребовалось 12 лет, чтобы долететь до Нептуна.

Чем отличаются двигатели

При сравнении двигателей необходимо учитывать три важных аспекта:

  • тягу — насколько быстро система может ускорить корабль;
  • массовую эффективность — сколько тяги система может произвести для данного количества топлива;
  • плотность энергии — сколько энергии может произвести данное количество топлива.

В настоящее время наиболее распространенными двигателями являются химические, работающие на топливе, а также электрические, использующие солнечную энергию.

Химические двигатели обеспечивают большую тягу, но они неэффективны, а ракетное топливо недостаточно энергоемко. Ракета «Сатурн V», которая доставила астронавтов на Луну, производила 35 миллионов Ньютонов и в нее пришлось заправить 4,3 миллиона литров топлива. По сути эта ракета — огромный топливный бак.

Электрические двигательные установки генерируют тягу, питаясь от солнечных батарей. При этом используется электрическое поле для ускорения ионов — двигатель Холла. Подобные двигатели применяются в спутниках и могут иметь более чем в пять раз большую массовую эффективность, чем химические. Но их тяга никуда не годится — около трех ньютонов. Если бы вы оснастили таким мотором автомобиль, то до 100 км/ч он разгонялся бы примерно за два с половиной часа. Кроме того, чем этот двигатель дальше от Солнца, тем меньше энергии он получает.

Одна из причин, из-за которых возобновились разработки атомных двигателей, заключается в том, что они обладают невероятной плотностью энергии. Урановое топливо, используемое в ядерных реакторах, имеет плотность энергии в четыре миллиона раз превосходящую плотность химического ракетного топлива. Согласитесь, легче доставить в космос немного урана, чем миллионы литров жидкого топлива.

Два типа ядерных двигателей

Инженеры разработали два типа ядерных систем для космических путешествий. Первый называется ядерно-тепловым двигателем (nuclear thermal propulsion). Эти системы очень мощные и в меру эффективные. Они имеют небольшой ядерный реактор, подобный тем, которыми оснащаются атомные подводные лодки. В нем нагревается водород, который впоследствии ускоряется через сопло ракеты — так получается тяга. Инженеры NASA считают, что полет на Марс с ядерным двигателем будет на 20-25% быстрее.

Ядерно-тепловые двигательные установки более чем в два раза эффективнее химических двигателей. Это означает, что они генерируют вдвое больше тяги при одинаковом количестве ракетного топлива — до 100 000 ньютонов. Этого достаточно, чтобы разогнать автомобиль до скорости 100 км/ч за четверть секунды.

Вторая система называется ядерным электроракетным двигателем (nuclear electric propulsion). В реальности его еще не существует, но идея состоит в том, чтобы использовать мощный реактор для выработки электроэнергии, которая затем приводила бы в действие электрическую двигательную установку — все тот же двигатель Холла. Такая установка была бы примерно в три раза эффективнее ядерно-тепловой.

Спустя 60 лет простоя (ядерный двигатель – разработка 1960-х годов) ракета с ядерным двигателем может отправится в космос в течение ближайшего десятилетия. Это откроет новую эру освоения космоса. Марс станет гораздо ближе, а полеты к нему — дешевле. Научные же эксперименты будут проводиться быстрее, а исследователи будут осыпать нас открытиями, сделанными в разных уголках Солнечной системы и за ее пределами.


Источник: www.popmech.ru