Все последние события из жизни вулканологов, сейсмологов
Японцев, Американцев и прочих несчастных, которым повезло родиться, жить
и умереть в зоне сейсмической активности

Стихия

Землетрясение, Извержения вулканов, Ледяной дождь, Лесные пожары, Ливни, Наводнения, Огненный смерч, Паводок, Смерчи (Торнадо), Тайфуны, Тектонический разлом, Ураганы, Цунами, град, ледоход

Вулканы

Авачинский, Безымянный, Бромо, Везувий, Даллол, Иджен, Йеллоустоун, Кальбуко, Карымский, Килауэа, Ключевская Сопка, Мерапи, Мутновский, Невадос-де-Чильян, Ньирагонго, Толбачик, Фуэго, Хурикес, Шивелуч, Этна

Тайфуны

Тайфун Нору

Наводнения

Наводнение в Приморье

Районы вулканической активности

Вулканы Камчатки, Вулканы Мексики, Курилы

Грязевые вулканы и гейзеры

Локбатан

Природа

Вулканы, Изменение климата, Красота природы

Наука

Археология, Вулканология

Наша планета

Живая природа, Спасение животных

Ураганы

Тайфун Мэттью, Ураган Ирма, Ураган Харви, ураган Мария

Районы сейсмической активности

Землетрясение в Италии, Землетрясение в Китае, Землетрясение в Турции

Солнечная система

Венера, Марс, Меркурий, Планета Земля, Плутон, Сатурн, Юпитер

Космос

экзопланеты

Астрономические события

Лунное затмение, Метеориты, Противостояние Марса, Суперлуние

Антропогенные факторы

Климатическое оружие

Землетрясения

Прогноз землетрясений

2020-09-10 09:18

Искусственный интеллект показал, как водород превращается в металл внутри гигантских планет

Плотный металлический водород – фаза водорода, которая ведет себя как электрический проводник – составляет внутреннюю часть планет-гигантов, но ее трудно изучать. Объединив искусственный интеллект и квантовую механику, ученые выяснили, как водород превращается в металл в условиях экстремального давления на этих планетах.

Исследователи из Кембриджского университета (Великобритания) и их коллеги использовали машинное обучение для имитации взаимодействия между атомами водорода, преодолев ограничения даже самых мощных суперкомпьютеров. Они обнаружили, что вместо резкого фазового перехода водород изменяется плавно и постепенно. Выводы ученых опубликованы в журнале Nature.

Водород, состоящий из одного протона и одного электрона, является самым простым и самым распространенным элементом во Вселенной. Это доминирующий компонент внутренней части планет-гигантов в Солнечной системе – Юпитера, Сатурна, Урана и Нептуна, а также экзопланет, вращающихся вокруг других звезд.

На поверхности газовых гигантов водород остается молекулярным газом. Однако в недрах планет давление превышает миллионы стандартных атмосфер. При таком экстремальном сжатии водород претерпевает фазовый переход: ковалентные связи внутри молекул разрываются, и газ становится металлом, проводящим электричество.

«Существование металлического водорода было теоретизировано столетие назад, но мы не знаем, как происходит этот процесс, из-за трудностей с воссозданием условий экстремального давления внутри гигантской планеты в лабораторных условиях и огромной сложности прогнозирования поведения больших водородных систем», – объясняет ведущий автор исследования доктор Бингкинг Ченг из Кембриджского университета.

Физики пытались исследовать плотный водород эксперементально, используя ячейку с алмазной наковальней, в которой два алмаза оказывают высокое давление на замкнутый образец. Хотя алмаз – самое твердое вещество на Земле, такое устройство выйдет из строя при экстремальном давлении и высоких температурах, особенно при контакте с водородом, вопреки утверждениям о том, что алмаз вечен. Это делает эксперименты сложными и дорогостоящими.

Теоретические исследования также непросты: хотя движение атомов водорода может быть описано с помощью уравнений, основанных на квантовой механике, вычислительная мощность, необходимая для расчета поведения систем с более чем несколькими тысячами атомов в течение более нескольких наносекунд, превышает возможности самых больших и быстрых суперкомпьютеров в мире.

Принято считать, что переход к металлическому водороду является быстрым преобразованием, которое сопровождается резкими изменениями всех физических свойств. Типичным примером фазового перехода первого рода является кипение жидкой воды: когда жидкость превращается в пар, ее внешний вид и поведение полностью меняются несмотря на то, что температура и давление остаются прежними.

В текущем теоретическом исследовании ученые использовали машинное обучение для имитации взаимодействия между атомами водорода, чтобы преодолеть ограничения прямых квантово-механических расчетов.

«Мы пришли к удивительному выводу и нашли доказательства непрерывного перехода от молекулы к атому в плотной водородной жидкости вместо фазового перехода первого рода», – сообщил Бингкинг Ченг.

Переход плавный, поскольку соответствующая «критическая точка» скрыта. Критические точки встречаются повсеместно при всех фазовых переходах между жидкостями: все вещества, которые могут существовать в двух фазах, имеют критические точки. Система с открытой критической точкой, например, для пара и жидкой воды, определяет четкое различие агрегатных состояний. Однако плотный водородный флюид со скрытой критической точкой может постепенно и непрерывно трансформироваться между молекулярной и атомарной фазами. Кроме того, эта скрытая критическая точка также вызывает другие необычные явления, включая максимумы плотности и теплоемкости.

Открытие непрерывного перехода дает новый способ интерпретации противоречивого множества экспериментов с плотным водородом. Оно также подразумевает плавный переход между изоляционным и металлическим слоями газовых гигантов. Без всякого сомнения, этот подход откроет больше физических представлений о водородных системах в будущем.


Источник: in-space.ru