Все последние события из жизни вулканологов, сейсмологов
Японцев, Американцев и прочих несчастных, которым повезло родиться, жить
и умереть в зоне сейсмической активности

Стихия

Землетрясение, Извержения вулканов, Ледяной дождь, Лесные пожары, Ливни, Наводнения, Огненный смерч, Паводок, Смерчи (Торнадо), Тайфуны, Тектонический разлом, Ураганы, Цунами, град, ледоход

Вулканы

Авачинский, Безымянный, Бромо, Везувий, Даллол, Иджен, Йеллоустоун, Кальбуко, Карымский, Килауэа, Ключевская Сопка, Мерапи, Мутновский, Невадос-де-Чильян, Ньирагонго, Толбачик, Фуэго, Хурикес, Шивелуч, Этна

Тайфуны

Тайфун Нору

Наводнения

Наводнение в Приморье

Районы вулканической активности

Вулканы Камчатки, Вулканы Мексики, Курилы

Грязевые вулканы и гейзеры

Локбатан

Природа

Вулканы, Изменение климата, Красота природы

Наука

Археология, Вулканология

Наша планета

Живая природа, Спасение животных

Ураганы

Тайфун Мэттью, Ураган Ирма, Ураган Харви, ураган Мария

Районы сейсмической активности

Землетрясение в Италии, Землетрясение в Китае, Землетрясение в Турции

Солнечная система

Венера, Марс, Меркурий, Планета Земля, Плутон, Сатурн, Юпитер

Космос

экзопланеты

Астрономические события

Лунное затмение, Метеориты, Противостояние Марса, Суперлуние

Антропогенные факторы

Климатическое оружие

Землетрясения

Прогноз землетрясений

2020-07-01 10:46

Ученые исследовали образование и окисление метана в термокарстовом озере

Международный коллектив ученых из восьми стран, куда входил и сотрудник Института мерзлотоведения им. П. И. Мельникова СО РАН (Якутск), исследовал процессы образования и окисления метана в одном из термокарстовых озер Севера. Данные, изложенные в статье, которая вышла в журнале Scientific Reports, позволяют расширить знания о том, как может происходить выделение и поглощение этого парникового газа в водных экосистемах Арктики, сообщает издание «Наука в Сибири».

В связи с потеплением климата многолетняя мерзлота, занимающая значительную территорию нашей страны, деградирует. Эти процессы приводят к тому, что, во-первых, изменяется сам рельеф местности: почва проседает, поскольку лед внутри нее превращается в воду. Так образуются болота и термокарстовые озера. Во-вторых, органика, находящаяся в многолетнемерзлых породах, под действием тепла начинает разлагаться и выделять в том числе метан — один из парниковых газов.

«Вообще, СН4 — очень актуальная тема в последние 20—25 лет, — говорит один из авторов статьи ведущий научный сотрудник ИМЗ СО РАН кандидат географических наук Никита Иванович Тананаев. — Особенно это касается того метана, что попадает в атмосферу из озер и болот, которые являются, можно сказать, его родиной. Важно понять, откуда берется СН4 в приповерхностной зоне водоема, как в этот слой (он называется эпилимнион) переносится и куда уходит в дальнейшем».

Ученых, которые занимаются этой тематикой, интересует биогенный метан — то есть тот, который главным образом производится бактериями в анаэробных (при отсутствии кислорода) условиях. Именно такой средой являются донные отложения озер. «Вообще, самая первая гипотеза по этому поводу была следующей: метан вырабатывается там, затем путем диффузии или пузырькового транспорта доходит до поверхности и частично поедается бактериями-метанотрофами, а частично — вылетает в атмосферу», — объясняет Никита Тананаев. Однако позже выяснилось, что не весь СН4 имеет своим источником донные отложения: частично он может вырабатываться бактериями непосредственно в эпилимнионе, а частично — поступать в озера с притоком воды. Со временем стали понятны и другие процессы, которые происходят внутри водоемов и тоже участвуют в цикле метана.

«В итоге так и возникла идея нашего исследования — выбрать несколько озер в разных мерзлотных условиях, взять образцы, провести измерения, попробовать оценить происходящее в толще воды по данным как полевых измерений, так и лабораторных результатов, — рассказывает Никита Тананаев. — В число измеряемых параметров вошли: концентрации растворенного кислорода, метана, углекислого газа, растворенного углерода, изотопный состав углерода и водорода в метане и СО2, видовой состав архей (микроорганизмов, которые потребляют или выделяют СН4). Дальше мы моделировали процесс вертикального переноса метана и сравнивали с фактическими данными, чтобы понять, в чем причина ошибок моделирования, какие процессы и за что могут отвечать».

По словам ученого, озеро было выбрано совершенно случайным образом: оно было типичным для водоемов такого происхождения, и в его развитии основную роль играет таяние вечной мерзлоты. «Сначала коллеги его назвали “Никита”, в мою честь, но потом для публикации все-таки передумали», — улыбается исследователь.

Самое важное, что удалось показать специалистам: весь метан в эпилимнионе озера выработан в нем же или поступил с боковым притоком воды. Со дна не поднялось нисколько СН4, он весь окислился бактериями, далеко не достигнув поверхности. «Кроме того, есть еще интересные результаты: во-первых, оказалось, что ниже четырех метров в озере отсутствует растворенный кислород; во-вторых, в интервале глубин от четырех до шести метров отсутствует и растворенный метан; в-третьих, оказалось, что СН4 в бескислородной части озера потребляют аэробные метанокисляющие бактерии, а не анаэробные», — говорит Никита Тананаев. 

 Он приводит абсолютные величины. Если говорить про общий бюджет метана в озере, то получается, что в самый нижний слой (гиполимнион) поступает около 113 микромоль СН4 в час с квадратного метра площади. Еще 498 микромоль производится археями в водной толще гиполимниона — итого 611 микромоль в час. Весь этот объем потребляется в верхней части металимниона (промежуточного слоя воды). Причем, как выяснилось, метан перерабатывается в основном аэробными метанотрофами, которые оказываются активны в бескислородных водах. «Возможно, весь кислород в гиполимнионе как раз потребляется этими бактериями, поэтому он и отсутствует в воде, — комментирует Никита Тананаев. — Однако весь метан, который находится в приповерхностной зоне, выделяется в атмосферу, но это составляет около 56 микромоль в час с квадратного метра, то есть на порядок меньше, чем вырабатывается в гиполимнионе».

Специалист отмечает, что пока неясно, с чем связаны эти особенности цикла метана в конкретном изученном озере. Чтобы понять, частный ли это случай или закономерность, нужны дальнейшие исследования, а также определенные характеристики водоема. Он должен быть достаточно глубоким, чтобы арктическим летом в нем могла развиться устойчивая и выраженная стратификация — разделение на резко отличающиеся по своим свойствам слои.

«Раньше считалось, будто деградация вечной мерзлоты будет обязательно приводить к увеличению выбросов метана из термокарстовых озер, а наша статья показывает, что эмиссия СН4 может регулироваться внутренним циклом этого газа в самом озере, и связь между потеплением и эмиссией метана сложнее, чем казалось раньше», — подчеркивает Никита Тананаев.

Иллюстрация: Термокарстовые озера на Енисейском Севере


Источник: scientificrussia.ru