Все последние события из жизни вулканологов, сейсмологов
Японцев, Американцев и прочих несчастных, которым повезло родиться, жить
и умереть в зоне сейсмической активности

Стихия

Землетрясение, Извержения вулканов, Ледяной дождь, Лесные пожары, Ливни, Наводнения, Огненный смерч, Паводок, Смерчи (Торнадо), Тайфуны, Тектонический разлом, Ураганы, Цунами, град, ледоход

Вулканы

Авачинский, Асо, Безымянный, Везувий, Йеллоустоун, Кампи Флегрей, Карангетанг, Килауэа, Ключевская Сопка, Мерапи, Мон-Пеле, Невадос-де-Чильян, Питон-де-ла-Фурнез, Сабанкая, Тавурвур, Толбачик, Фуэго, Хурикес, Шивелуч, Этна

Тайфуны

Тайфун Нору

Наводнения

Наводнение в Приморье

Районы вулканической активности

Вулканы Камчатки, Вулканы Мексики, Курилы

Грязевые вулканы и гейзеры

Локбатан

Природа

Вулканы, Изменение климата, Красота природы

Наука

Археология, Вулканология

Наша планета

Живая природа, Спасение животных

Ураганы

Тайфун Мэттью, Ураган Ирма, Ураган Харви, ураган Мария

Районы сейсмической активности

Землетрясение в Италии, Землетрясение в Китае, Землетрясение в Турции

Солнечная система

Венера, Марс, Меркурий, Планета Земля, Плутон, Сатурн, Юпитер

Космос

экзопланеты

Астрономические события

Лунное затмение, Метеориты, Противостояние Марса, Суперлуние

Антропогенные факторы

Климатическое оружие

Землетрясения

Прогноз землетрясений

2019-10-19 09:16

При климате, близком к современному, уровень моря в плиоцене был на 25 метров выше

Рис. 1. Изучив песчаные отложения плиоценового возраста в долине реки Уонгануи в Новой Зеландии, ученые смогли определить, насколько сильно менялся уровень моря в плиоцене. Фото с сайта ru.wikipedia.org

По данным спутниковых наблюдений, из-за таяния ледников Гренландии и Антарктиды уровень Мирового океана ежегодно повышается примерно на 3,5 мм. При сохранении тренда на рост температуры, по самым мрачным прогнозам развития событий, в ближайшие сто лет под воду могут уйти целые государства, такие как Мальдивы, Нидерланды или Бангладеш. Но в относительно недавнем (по геологическим меркам) прошлом на Земле уже был период, когда средняя температура была на 1–2°C выше, чем сейчас, а содержание СО2 в атмосфере практически равнялось современному, — это так называемый теплый период среднего плиоцена. Разные оценки уровня моря в этот период согласуются в том, что уровень был выше, чем сейчас, однако разброс очень большой — от 5 до 35 метров. Недавно в журнале Nature вышли две статьи, в которых разными методами эти оценки были существенно уточнены: теперь диапазон сужен до 15–25 метров.

Климат в среднем плиоцене (3,3–3,0 млн лет назад) был очень похож на современный: уже имела место сезонность, существовали ледниковые щиты Антарктиды и Гренландии, а содержание СО2 в атмосфере было примерно равно современному — около 400 ppm. При этом температура была на 1–2°C выше. Поэтому теплый период среднего плиоцена обычно рассматривают в качестве примера состояния, к которому может приблизиться глобальная климатическая система в ближайшее столетие, если тенденция роста температур на планете сохранится.

Одним из главных факторов риска, связанных с глобальным потеплением, является рост уровня Мирового океана. Понимание того, в каких пределах менялся этот параметр в условиях среднего плиоцена, поможет понять, к чему следует готовиться человечеству.

Надо сказать, что и позднее, уже в плейстоцене, были периоды, когда климат на Земле был теплее современного. Это так называемые климатические оптимумы Гольштейнского (Holstein, 335–300 тыс. лет назад) и Эемского (Eemian, 130–115 тыс. лет назад) межледниковий. Средняя температура на Земле в эти периоды были на 1–2°C выше, чем в позднем голоцене (доиндустриальная эпоха). Выше на 6–10 м, чем сейчас, был и уровень моря (рис. 2).

Рис. 2. Изменение глобальных температур (вверху) и уровня моря (внизу) за последние 5 млн лет

Рис. 2. Изменение глобальных температур (вверху) и уровня моря (внизу) за последние 5 млн лет. За нулевую отметку приняты параметры позднего голоцена (доиндустриальная эпоха). Буквами Н и Е отмечены Гольштейнское и Эемское межледниковья. Графики из статьи J. E. Hansen, M. Sato, 2012. Paleoclimate Implications for Human-Made Climate Change и с сайта alpineanalytics.com

Несомненно, рост содержания СО2 в атмосфере — важный фактор глобального потепления и связанного с ним повышения уровня Мирового океана. Однако этот фактор не единственный. Например, уровень СО2 в период Гольштейнского и Эемского межледниковий, когда уровень моря был существенно выше, чем сегодня, был относительно низким — всего 280 ppm (на начало 2019 года содержание СО2 в атмосфере составляло 408,78 ppm).

Отсюда понятно, что судить об уровне Мирового океана по одному из параметров, описывающих состояние атмосферы и влияющих на изменения климата, — например, только по температуре — невозможно, а учитывать в моделях взаимное влияние всех факторов (орбитальных параметров, влияющих на инсоляцию поверхности Земли, режимов атмосферных и океанических циркуляций, состава атмосферы, альбедо Земли и т. д.) очень и очень сложно.

Международная группа ученых под руководством Джорджии Роуз Грант (Georgia Rose Grant) из Университета королевы Виктории в Веллингтоне (Новая Зеландия) разработала прямой метод оценки уровня моря в прошлом по размеру и окатанности частиц песка в прибрежной зоне (метод PlioSeaNZ). Сначала были изучены современные песчаные отложения, благодаря чему ученые установили теоретическую взаимосвязь между гранулометрическим составом осадочных пород и глубиной, на которой они образовались, а затем применили полученную закономерность к непрерывной 800-метровой толще мелководных песчаных отложений плиоценового возраста в бассейне реки Уонгануи (Новая Зеландия). Эти породы, извлеченные при помощи бурения, содержат непрерывную последовательность неглубоких морских отложений плиоцена самого высокого разрешения в мире, что позволило ученым восстановить историю колебаний уровня моря со значительно большей точностью, чем это было возможно ранее.

Детальные замеры зерен после поправок на вертикальные тектонические движения сначала позволили получить представление о циклических изменениях относительного уровня моря (RSL — relative sea-level), амплитуда которых в течение ледниково-межледниковых циклов среднего-позднего плиоцена (3,3–2,5 млн лет) по оценкам авторов составляла 13±5 м. Затем к полученным результатам была применена астрономическая калибровка, выполненная ранее для отложений бассейна Уонгануи (T. R. Naish et al., 1998. Astronomical calibration of a southern hemisphere Plio-Pleistocene reference section, Wanganui Basin, New Zealand). То есть выявленные в результате гранулометрических исследований колебания были сопоставлены с более чем 50 зафиксированными в отложениях Уонгануи глобальными колебаниями уровня моря, которые являлись отражением природных климатических циклов, известных как циклы Миланковича (изменения орбитальных параметров Земли каждые 100 и 41 тыс. лет; подробнее о циклах Миланковича см. статьи Циклы Миланковича и Удлинение ледниковых циклов в плейстоцене может быть связано с ослаблением циркуляции океанических вод, «Элементы», 22.03.2019), а также с циклами продолжительностью 20 тыс. лет, связанными с циклическими изменениями инсоляции Антарктиды, вызванными орбитальной прецессией (рис. 3).

Рис. 3. Относительный уровень моря (RSL на правой шкале, в м; голубая линия), полученный методом PlioSeaNZ, и его сопоставление с орбитальными параметрами: эксцентриситетом орбиты (крайняя левая шкала; пунктирная линия) и величиной инсоляции (левая шкала, в Вт/м2; сплошная черная линия). Серым показаны периоды межледниковий. По горизонтали — время в млн лет и подразделения осадочной толщи бассейна Уонгануи. Рисунок из обсуждаемой статьи в Nature

Учет всех астрономических корректировок позволил авторам произвести оценку колебаний среднего уровня моря (GMSL — global-mean sea level) в плиоцене, который был на 5–20 м выше современного, а максимальное зафиксированное превышение составило 25 м (рис. 4). Предполагается, что для такого повышения нужно, чтобы растаяло до трети ледникового покрова Антарктиды, а также произошло практически полное освобождение от льда Гренландии.

Рис. 4. Колебания уровня моря в плиоцене относительно современного

Рис. 4. Амплитуда колебаний уровня моря в плиоцене относительно современного (в метрах). Синие точки — ледниковые фазы, красные — межледниковья. По горизонтали — время в млн лет. Рисунок из обсуждаемой статьи в Nature

Интересно то, что практически параллельно другие ученые под руководством Оаны Думитру (Oana A. Dumitru) из Университета Южной Флориды в США, используя другой метод прямых измерений, получили очень близкие значения. Объектом изучения этой группы исследователей стали пещеры Арты на острове Мальорка. В течение последних 4,5 млн лет эти пещеры были соединены с морем, и на границе соприкосновения морской воды со стенками пещер откладывались так называемые фреатические образования, сложенные карбонатами (кальцитом и арагонитом). Постоянное присутствие в их составе урана (на уровне примесей) позволило авторам, используя уран-свинцовый метод, определить возраст отложений. В итоге ученые получили абсолютно независимые данные, привязанные к абсолютному возрасту. По их определениям уровень моря в позднем плиоцене превышал современный на 16,2–23,5 м.

В недавно опубликованном Специальном докладе Межправительственной группы экспертов по изменению климата (МГЭИК) об океанах и криосфере в условиях изменения климата отмечается, что более 90% образующегося вследствие глобального потепления избыточного тепла поглощается океаном. Наибольший рост температур отмечается в Южном океане, омывающем Антарктиду. Даже при нынешних темпах таяния антарктических ледников уровень Мирового океана к 2100 году повысится на 60–110 см. Авторы первого исследования говорят о том, что с учетом возникающей в системе ледники–океан положительной обратной связи, это повышение может составить до 2 м. Далее ситуация может развиваться катастрофически в связи с тем, что около 30% ледяного покрова Антарктиды окажется ниже уровня моря.

Источники:
1) G. R. Grant, T. R. Naish, G. B. Dunbar, P. Stocchi, M. A. Kominz, P. J. J. Kamp, C. A. Tapia, R. M. McKay, R. H. Levy, M. O. Patterson. The amplitude and origin of sea-level variability during the Pliocene epoch // Nature. 2019. V. 574. P. 237–241. DOI:  10.1038/s41586-019-1619-z.
2) Oana A. Dumitru, Jacqueline Austermann, Victor J. Polyak, Joan J. Forn?s, Yemane Asmerom, Joaqu?n Gin?s, Angel Gin?s, Bogdan P. Onac. Constraints on global mean sea level during Pliocene warmth // Nature. 2019. V. 574. P. 233–236. DOI: 10.1038/s41586-019-1543-2.

Владислав Стрекопытов


Источник: elementy.ru