Все последние события из жизни вулканологов, сейсмологов Японцев, Американцев и прочих несчастных, которым повезло родиться, жить и умереть в зоне сейсмической активности
Есть ли проблемы с согласованием скорости расширения Вселенной?
Наверное, можно было бы сразу начать заметку с обсуждения двух высказываний: «в наблюдательной космологии есть проблемы согласования современных результатов разных экспериментов» и «в наблюдательной космологии, кроме старых, других проблем нет». Но все-таки я сделаю небольшое вступление, а также введу некоторые термины для читателей, которые впервые окунутся в обсуждаемую тему.
За последние двадцать лет в наших представлениях о Вселенной произошла революция. Особенно сильно это проявляется в исследованиях, где новые прорывные технологии, связанные c электроникой, космическими системами, суперкомпьютерами и программным математическим обеспечением, дали возможность проводить немыслимые ранее наблюдения дальнего космоса. Была построена согласованная стандартная космологическая модель, называемая ?CDM, которая удовлетворяет практически всем наблюдательным данным и описывает эволюцию Вселенной от момента ее возникновения до десятков миллиардов лет вперед. Модель включает конечное число параметров и имеет расширения (дополнительные параметры), которые также удается измерить с высокой точностью.
?CDM-модель
Что такое космологическая модель ?CDM («Лямбда-СиДиЭм»)? Это модель, в названии которой и заключены две главные проблемы современной космологии: темная энергия (ТЭ), описываемая ?-членом в уравнении Эйнштейна, действие которой наблюдается на масштабах нескольких десятков миллионов световых лет как ускоренное расширение Вселенной, и темная материя (ТМ), гравитационные проявления которой мы видим на масштабах галактик, скоплений галактик и крупномасштабной структуры Вселенной. Темная материя представляется в стандартном описании как холодная темная материя (Cold Dark Matter — CDM). Хотя мы не знаем, что такое ТЭ и TM, у нас все-таки есть представления об их физических свойствах в настоящую эпоху. ТЭ — это некоторая субстанция с отрицательным давлением, наблюдаемая на очень больших масштабах; ее часто сравнивают с вакуумом. ТМ — это, скорее всего, вещество, состоящее из массивных нейтральных частиц, не входящих в Стандартную модель физики элементарных частиц и не участвующих в электромагнитном взаимодействии. Но, возможно, что кроме гравитационного ТМ может участвовать в слабом либо в другом, неизвестном взаимодействии. А может быть, и нет. Вклад обоих компонентов в энергетический баланс Вселенной хорошо измерен по их проявлениям. В рамках согласованной модели, использующей данные космической миссии Planck 2018 года и барионных (или, по-другому, акустических, или сахаровских) осцилляций, измеренных в оптических наблюдениях Слоановского обзора неба (Sloan Digital Sky Survey — SDSS), вклад составляет ~69% TЭ и ~26% ТМ. При этом за ~5% энергии ответственно видимое (барионное) вещество.
Космологические тесты
Космологическая модель ?CDM описывается минимальным набором из шести космологических параметров. Их значения ищутся одновременной подгонкой методом максимального правдоподобия к данным различных экспериментов. В результате находится точка в многомерном пространстве, которая дает лучшее соответствие совокупности наблюдений. В последней работе коллаборации Planck 2018 года [1] по определению параметров использовались данные по неоднородностям реликтового фонового микроволнового излучения и его поляризации, а также данные по барионным осцилляциям (Baryon Oscillation Sky Survey — BOSS) [2], измеренным в оптическом Слоановском обзоре неба. Поиск параметров опирается на неоднородность Вселенной, которая проявляется в разных распределениях. В случае реликтового излучения она проявляется в угловом спектре мощности (обозначается Cl). Он показывает относительную долю энергии, приходящей из Вселенной в проекции на окружающую нас воображаемую сферу, в зависимости от углового масштаба, в котором эта доля энергии измеряется (рис. 1). Для изучения распределения вещества применяют корреляционные функции, которые в классическом астрофизическом подходе позволяют находить выделенные расстояния между объектами в пространстве (рис. 2). Кроме того, одним из наиболее активно применяемых методов определения свойств Вселенной является диаграмма Хаббла, связывающая скорость удаления галактики от нас (или скорость расширения Вселенной) с расстоянием до этой галактики (рис. 3). Расстояние (модуль расстояния) до галактики связывает ее абсолютную звездную величину M и видимую m. В основном в измерениях используют именно разность m — M при построении зависимости. А вместо скорости удаления галактики применяют красное смещение z, определяющее относительный сдвиг спектра в красную сторону, т. е. в сторону меньших частот или бо?льших длин волн электромагнитного спектра.
В общем, как при эффекте Доплера: при приближении машины частота звука повышается, а при удалении — понижается. С той лишь разницей, что космологическое красное смещение не связано с эффектом Доплера, а определяется расширением Вселенной.
Все эти функции — угловой спектр мощности, корреляционные функции скоплений галактик и диаграмма Хаббла — применяются в процедуре подгонки параметров как самостоятельные зависимости, так и общим набором для построения согласованной модели.
Чтобы быть точным в изложении, надо отметить, что кроме этих трех космологических тестов еще есть линии поглощения квазаров, когда по положению и ширине линий водорода на различных красных смещениях удается восстановить структуру Вселенной; гравитационное линзирование на скоплениях галактик; классические подсчеты источников излучения; стандартная линейка при измерении углового размера объектов с известным физическим размером; стандартные свечи для разных объектов стандартной светимости (они же имелись в виду, когда говорилось о диаграмме Хаббла); стандартные часы для измерения динамики расширения Вселенной по данным возраста галактик с учетом эволюции звезд и темпа звездообразования; и ряд других тестов. Кроме того, измеренные космологические параметры являются входными для построения точных компьютерных симуляций и их статистического сравнения с результатами наблюдений.
Параметры модели
Приведем минимальный «джентльменский набор» космологических параметров действующей согласованной модели на 2018 год [1], который всегда полезно иметь под рукой. Он включает:
1) угловой размер акустического горизонта эпохи последнего рассеяния, измеряемый по положению пиков в угловом спектре мощности ?* = 0,5965±0,0002°;
2) амплитуда первичных возмущений As (чрезвычайно мала);
3) скалярный спектральный индекс (показывающий относительную скорость роста первичных возмущений плотности на разных масштабах, из которых потом образовались галактики и скопления галактик) ns = 0,9665±0,0038;
4) и 5) плотность барионной и темной материи соответственно (обращаем внимание, что это связанные параметры, а именно домноженные на h2, где h — постоянная Хаббла H0, деленная на 100) ?bh2 = 0,2 242±0,14 (откуда ? ? 0,049) и ?CDMh2 = 0,11 933±0,91 (?CDM ? 0,259), а их сумма — плотность материи ?m = 0,3111±0,0056;
6) шестой параметр — красное смещение zre = 7,82±0,71, на котором произошла вторичная ионизация (реионизация) Вселенной первыми звездами и квазарами, или, что тоже самое — оптическая толща свободных электронов между нами и эпохой реионизации ? = 0,0561±0,0071.
Физическая параметризация описана в работе Planck 2013 года [3] (на русском языке можно посмотреть в [4]).
Измеренные параметры позволяют зафиксировать космологическую модель и определить остальные производные и дополнительные параметры как с использованием только данных «Планка», так и с применением данных других экспериментов в согласованных оценках. Среди остальных параметров отметим плотность темной энергии ??= 0,6889±0,0056, величина которой связана и с размером ?*, и с прохождением фотонов РИ сквозь формирующиеся скопления галактик за космологическое время (эффект Сакса — Вольфа). Другим важным параметром является параметр расширения Хаббла в настоящую эпоху — постоянная Хаббла H0 = 67,66±0,42 км/с на мегапарсек (Мпк). С параметром Хаббла связан и возраст Вселенной t0 = 13,787±0,020 млрд лет. Знание оптической толщины, которая определяет свойства среды и связана с плотностью материи, а также применение данных о гравитационном линзировании фиксируют неравномерность распределения вещества. Эта величина описывается параметром ?8= 0,8102±0,0060, характеризующим скучивание материи в кубе со стороной 8 Мпк. Еще один параметр плотности — ?K = 1 — ?0, описывающий кривизну Вселенной, связан с суммарной плотностью всех компонент энергии ?0 объединяющей ??, ?c, ?b, плотности излучения и нейтрино, и с размером характерных пятен РИ на момент рекомбинации ?*. Используя только данные РИ, куда входят и измерения Planck и учитываются линзирование и данные оптических обзоров, имеем оценку кривизны: ?K = 0,0007±0,0019. Малое значение ?K является признаком того, что наша Вселенная с высокой точностью плоская (т. е. сумма углов любого треугольника, построенного на больших масштабах — порядка десятков миллионов световых лет — равна 180°). Кроме того, необходимо отметить, что ?CDM — это все-таки семейство моделей, допускающее различные вариации основных параметров и включающее также различные расширения.
Обратим внимание на приводимую точность определения параметров — лучше/порядка 1% — точность, недостижимая в настоящее время во многих астрофизических и физических экспериментах. И для постоянной Хаббла она лучше, чем 1%, — 420 м/с/Мпк. Даже можно сказать, невероятная. Каким образом она получается? В общем виде параметр Хаббла H(z), описывающий скорость расширения Вселенной в разные космологические эпохи, определяется соотношением H(z)2 = H02 x (?R x (1+z)4 + ?m x (1+z)3 + (?0-1) x (1+z) + ??), где H0 — постоянная Хаббла — параметр Хаббла в настоящую эпоху, ?R, ?m, ?0, ?? — соответственно относительные плотности излучения, вещества (видимого + темного), полной плотности энергии и темной энергии в настоящую эпоху. Параметр Хаббла входит в описание скорости роста неоднородностей плотности (в том числе и через эффекты линзирования в разные эпохи), наблюдаемых угловых размеров характерных неоднородностей в распределении реликтового фона (чем быстрее сейчас расширяется Вселенная, тем меньше их наблюдаемый угловой размер) и также связан с температурой космического микроволнового фонового излучения. Изменение параметра H0 приводит к существенному изменению формы углового спектра мощности (см. рис. 4). Набор физических описаний со свободными параметрами включается в общую процедуру совместного определения наиболее правдоподобных величин параметров, в результате выполнения которой и получаются приведенные значения.
Качество данных
Картина с микроволновыми данными Planck и барионными осцилляциями в SDSS в целом понятна. Но имеются еще и данные группы Адама Рисса [5], нобелевского лауреата, одного из открывателей факта ускоренного расширения Вселенной. Его результаты определения постоянной Хаббла (проект SH0ES — SN, H0, Equation of State of dark energy) отличаются более чем на 3,5? от величины H0 коллаборации Planck: по Риссу и др. H0 = 73,52±1,62 км/с/Мпк на 2018 год. Команда Рисса использует сверхновые типа Ia (SN Ia) как стандартные свечи. Взрыв белого карлика в двойной звездной системе при перетекании на него вещества со звезды-компаньона и запуске термоядерных реакций приводит к вспышке сверхновой стандартной светимости (из-за фиксированной предельной массы белого карлика) и несложной для опознания затухающей кривой блеска SN Ia. Вспышка по яркости сравнима с родительской галактикой и при известном красном смещении позволяет построить диаграмму Хаббла и далее определить с помощью нее параметры расширения Вселенной. Это можно сделать, если данных по объектам типа SN Ia достаточно много и они перекрывают большой диапазон красных смещений.
Если различие в данных Planck и группы Рисса реально, то придется говорить об изменении физических свойств Вселенной, причем, возможно, с привлечением новой физики. Если это эффект систематики (то есть связанный с трудноучитываемым изменением эволюционных свойств объектов в разные эпохи, неполнотой данных, особенностями наблюдений или методикой обработки данных), то нужно определить, кто неправ: коллаборация Planck и ей сочувствующие (порядка 500?1000 космологов, наблюдателей и теоретиков) или команда Рисса.
И тут самое время поговорить о качестве данных. Данные Planck для определения космологических параметров включают три корреляционных спектра: угловой спектр мощности анизотропии (то есть вариаций) температуры реликтового излучения, угловой спектр мощности поляризации РИ в электрической моде (E-моде), корреляционный спектр между анизотропией температуры и E-модой поляризации. Каждый спектр содержит по 2500 независимо измеренных точек. За спектрами стоят порядка 4 млрд пикселей, полученных по данным десятков тысяч измерений в каждом пикселе на девяти частотах (30, 44, 70, 100, 143, 217, 353, 545, 847 ГГц) и в двух модах поляризации (для первых семи частот). Данные полны на сфере и однородны. Таким образом, удается почти легко и точно провести разделение фоновых компонент нашей Галактики и данных реликтового микроволнового фона и построить соответствующие угловые спектры мощности. Особая «волнистая» форма спектра мощности, определяемая сахаровскими осцилляциями в первичной плазме1, позволяет с предельно высокой степенью точности найти и измерить амплитуды в точках максимума и минимума спектра. Это в свою очередь позволяет получить высокую точность измерения космологических параметров. Следует также отметить, что разделение компонент проводится различными методами, и в результате получаются очень близкие карты РИ и, соответственно, практически совпадающий спектр Cl, рассчитываемый при различных подходах.
Данные Рисса основаны на построении точной «лестницы расстояний» и измерениях кривых блеска сверхновых типа SN Ia. Лестница расстояний включает много различных стандартных по светимости объектов и методов измерений расстояний до них. В классическом варианте ее фундамент строится на измерении тригонометрических параллаксов цефеид Млечного Пути, позволяющих определить расстояния до объектов с помощью простых методов решения треугольника по известной стороне (радиусу орбиты Земли, например) и углам. Угол смещения звезды в проекции на небо за время путешествия наблюдателя по орбите вокруг Солнца позволяет практически прямым измерением определить расстояние до нее, а с учетом опубликованных данных спутника Gaia Европейского космического агентства заявленная точность определения параллаксов достигла 30?40 угловых микросекунд для звезд на расстояниях 2?4 кпк с учетом их собственных движений. Цефеиды — класс переменных звезд, чей период вариации блеска связан с их светимостью, и таким образом их можно использовать как стандартные свечи, если известен период переменности. Если точно откалибровать расстояние до цефеид и далее от цефеид до SN Ia (для этого в близких галактиках, где произошла вспышка SN Ia, ищутся цефеиды), то удается построить надежную лестницу расстояний и проводить космологические измерения.
Сделаем некоторые примечания к этому методу. Список сверхновых типа Ia не очень большой — более-менее надежных объектов этого типа порядка 2000. Результатов измерений кривых блеска SN Ia при красных смещениях z>1 мало, при z>1,5 прямо совсем мало. А при z>2 их, в общем, и нет (при z = 2 возраст Вселенной t~3,3 млрд лет). Хотя, например, зарегистрированные гамма-всплески из тех эпох есть.
Всё еще нет уверенного знания, насколько стандартным является тип SN Ia (см. величину разброса данных на рис. 3). И если для поиска, обнаружения и измерения вклада темной энергии достаточно было порядка десятка сверхновых за z>0,7 (z~0,7 или t~7 млрд лет задают область временно?го интервала, где при движении из прошлого в настоящее происходит переход от пылевой эпохи к эпохе темной энергии), то для точных измерений нескольких десятков объектов уже недостаточно. Неясно, насколько стандартными являются SN Ia при другом химическом составе, который был в более ранние эпохи. Не очень ясно, как себя ведет кривая блеска SN Ia при взрыве компоненты в паре двух белых карликов и сколько таких пар участвует в производстве вспышек. Списки сверхновых Ia неоднородны и неполны по пространственным направлениям и по космологическим эпохам, что ограничивает возможность обобщения результатов даже в случае точного измерения кривых блеска.
Обсуждение
Что активно обсуждается? Данные о SN Ia содержат информацию о близкой Вселенной, в то время как данные по реликтовому излучению — о далекой. Однако в РИ присутствует отражение физических процессов, связывающих его с современной эпохой. Это и скорость расширения Вселенной, которая отражается в характерных размерах пятен, и линзирование на крупномасштабной структуре (что, кстати, нельзя было наблюдать в предыдущей космической миссии WMAP из-за худшего разрешения), и, вообще, скорость формирования структур. Из приведенной выше формулы для H(z) видно, что параметр Хаббла — производный от параметров плотности, а постоянная Хаббла в этом описании может рассматриваться как калибровочный множитель. Однако, когда приводятся результаты измерения H0, часто оговаривается, что данная величина получена в рамках согласованной модели. Например, на рис. 5 приведены результаты совместного определения космологических параметров H0 и ?mдля барионных осцилляций, которые сейчас рассматриваются как независимая стандартная линейка, сверхновым, исследуемым в проекте Pantheon [6], а также по количеству дейтерия в первичном нуклеосинтезе и параметрам, измеряемым по данным РИ. Следует сказать, что в работе Planck [1] для построения функции правдоподобия используется ~1,3 тыс. объектов типа SN Ia из списка Pantheon, которые дают согласованные величины с данными Planck и барионных осцилляций, показанных на рис. 5.
Особенность работы группы Рисса заключается в том, что они уточнили шкалу расстояний по данным Gaia и, соответственно, привязку стандартных свечей. Но, в принципе, есть работы (см. [7]), в которых также по данным Gaia уточняется привязка цефеид и получается результат измерения H0, согласованный с данными Planck: H0= 67,6±1,52 км/с/Мпк.
Отдельным пунктом можно было бы обсудить определение космологических параметров с помощью данных по скоплениям галактик, которые также расходятся с основными космологическими результатами Planck (см. например, обсуждение в [8]). И здесь стоило бы обсудить различие оценок параметров по микроволновым, оптическим и рентгеновским данным и по результатам измерений гравитационного линзирования на скоплениях галактик. Этим результатам посвящена не одна статья. И, тем более, есть статьи коллаборации Planck, посвященные поиску скоплений галактик по эффекту Зельдовича — Сюняева на картах миллиметрового/субмиллиметрового диапазона, оценкам с помощью этих измерений космологических параметров и обсуждению различия величин параметров, определяемых таким образом [8]. Обсуждение результатов исследования скоплений галактик в микроволновом диапазоне, конечно, стоит отдельной статьи. Но здесь отметим лишь некоторые моменты, связанные со свойствами скоплений галактик. Данных по скоплениям галактик (как и самих скоплений) мало, так же, как и сверхновых типа Ia. Сейчас пока можно говорить о нескольких тысячах известных скоплений, а с эффектом Зельдовича — Сюняева — не больше двух тысяч. Наблюдаемых скоплений галактик практически нет при z>2 (хотя есть работы, посвященные исследованию протоскоплений на z~5), не очень ясны их границы в пространстве, и при больших z нет уверенности в точном определении их массы. В настоящее время разные группы разбираются с этими проблемами и, может быть, если число этих объектов возрастет с тысяч до нескольких десятков тысяч и будут надежные оценки их массы, то также возрастет и точность измерений на основе этих данных.
А что если верны измерения H0 и по согласованным данным Planck, и по данным группы Рисса? То есть рассматривается ли случай построения модели с особенностями по разным данным с отличающейся постоянной Хаббла? Да, рассматривается. Есть работы, где изучается возможное изменение плотности темной материи со временем, например ее распад [9], пространственные вариации темной энергии или даже особые эффекты Мультиверса. Всё это требует новой физики. Закрыть без точных измерений эти гипотезы пока нельзя. Особенно если вспомнить историю с темной энергией, когда новая физика ворвалась в нашу жизнь в 1998 году. И так и остается пока необъясненной.
Часто говорят, что измерения с помощью SN Ia являются прямыми измерениями, а измерения с помощью РИ — модельными. И этим объясняют различие в значениях H0. На мой взгляд, в этом замечании есть доля лукавства. Вообще, любые измерения являются модельными. Причем на разных этапах. При наблюдениях площадок неба моделируется и удаляется фоновая компонента на изображении, моделируется аппаратная функция прибора для определения интегральных характеристик сигнала, для учета собственных движений делаются выводы (тоже модельные) о движении звезд и галактик в родительских системах. И наконец моделируется тип локальной Вселенной — часто это евклидов мир с добавленным расширением, в котором применяется линейный или нелинейный закон Хаббла. С другой стороны, с чем же, как не с моделями, т. е.со стандартными шаблонами, сравнивать проведенные измерения? Они же и являются опорой наших выводов и основой поиска новых закономерностей. В той же работе Planck [1] обосновывается новый стандарт, объединяющий практически все космологические тесты в один, — стандартный угловой спектр мощности анизотропии РИ. Спектр сейчас содержит 2500 независимых измерений энергетических величин — квадратов амплитуд гармоник на различных угловых масштабах. Их значения строго привязаны к физическим процессам, протекавшим в разные эпохи Вселенной, и с помощью этой кривой можно измерять различные космологические параметры, в том числе и постоянную Хаббла. На мой взгляд (но он, в принципе, может и измениться под давлением новых измерений), Planck дал наиболее корректную величину постоянной Хаббла, а данные по SN Ia могут иметь скрытую систематику, связанную с неполнотой данных и нетривиальными процессами во вспышках. В конце приведу одну цитату из работы [1]: «Измерения Planck находятся в отличном согласии с независимыми построениями лестниц расстояний с использованием барионных осцилляций, сверхновых и результатов по распространенности элементов. Однако ни одна из расширенных моделей, которые обсуждались в данной статье, не позволяет по-настоящему справиться с напряжением, возникшим в связи с величиной H0по данным Рисса и др. (2018)».
Но мир меняется, и каждый год появляются новые данные независимых экспериментов в различных энергетических диапазонах излучения Вселенной. При любом раскладе разрешение загадки расхождения измерений H0 даст новый толчок наблюдательной космологии. И это будет очень интересно. Я надеюсь.
Примечания
Planck Collaboration, Astron. Astrophys. In press (2019), arXiv: 1807.6 209
Alam S. et al., Month. Not.Roy. Astr. Soc. 470, 2617 (2017), arXiv: 1607.3 155