Все последние события из жизни вулканологов, сейсмологов
Японцев, Американцев и прочих несчастных, которым повезло родиться, жить
и умереть в зоне сейсмической активности

Стихия

Землетрясение, Извержения вулканов, Ледяной дождь, Лесные пожары, Ливни, Наводнения, Огненный смерч, Паводок, Смерчи (Торнадо), Тайфуны, Тектонический разлом, Ураганы, Цунами, град, ледоход

Вулканы

Авачинский, Асо, Безымянный, Везувий, Йеллоустоун, Кампи Флегрей, Карангетанг, Килауэа, Ключевская Сопка, Мерапи, Мон-Пеле, Невадос-де-Чильян, Питон-де-ла-Фурнез, Сабанкая, Тавурвур, Толбачик, Фуэго, Хурикес, Шивелуч, Этна

Тайфуны

Тайфун Нору

Наводнения

Наводнение в Приморье

Районы вулканической активности

Вулканы Камчатки, Вулканы Мексики, Курилы

Грязевые вулканы и гейзеры

Локбатан

Природа

Вулканы, Изменение климата, Красота природы

Наука

Археология, Вулканология

Наша планета

Живая природа, Спасение животных

Ураганы

Тайфун Мэттью, Ураган Ирма, Ураган Харви, ураган Мария

Районы сейсмической активности

Землетрясение в Италии, Землетрясение в Китае, Землетрясение в Турции

Солнечная система

Венера, Марс, Меркурий, Планета Земля, Плутон, Сатурн, Юпитер

Космос

экзопланеты

Астрономические события

Лунное затмение, Метеориты, Противостояние Марса, Суперлуние

Антропогенные факторы

Климатическое оружие

Землетрясения

Прогноз землетрясений

2019-04-24 09:33

Решена 40-летняя загадка магнитного поля Земли

Цифровое воспроизведение и понимание геомагнитных рывков прокладывает путь к лучшему прогнозированию поведения магнитного поля Земли.

Первоначально описанные в 1978 году геомагнитные рывки представляют собой непредсказуемые события, которые резко ускоряют эволюцию магнитного поля Земли и искажают прогнозы его поведения в многолетнем масштабе. Геомагнитное поле влияет на многочисленные виды деятельности человека, начиная от определения геолокации в смартфонах и заканчивая полетом спутников на малых высотах, поэтому так важно точно отслеживать его изменения. Тем не менее, геомагнитные рывки представляют проблему для геофизиков на протяжении более сорока лет. И вот теперь, исследование, опубликованное в журнале Nature Geoscience, ставит точку в этом вопросе.

Магнитное поле Земли создается благодаря циркуляции вещества в ее металлическом ядре за счет энергии, выделяемой при его охлаждении. Исследователям известны два типа движений, вызывающих изменения в магнитном поле: те, что возникают в результате медленного конвекционного движения, которое можно измерить в масштабе столетия, и те, что происходят в результате «быстрых» гидромагнитных волн, которые можно обнаружить в масштабе нескольких лет. Ученые подозревали, что последние играют роль в геомагнитных рывках, но взаимодействие этих волн с медленной конвекцией, наряду с их механизмом распространения и усиления, еще не было установлено.

Чтобы разгадать эту загадку, Жюльен Обер из Парижского института физики Земли (Франция) совместно с его коллегой из Технического университета Дании разработал компьютерную симуляцию очень близкую к физическим условия ядра нашей планеты. Моделирование оказалось эквивалентным 4 миллионам часов вычислений и было выполнено лишь благодаря суперкомпьютерам GENCI.

Исследователи воспроизвели последовательность событий, приводящих к геомагнитным рывкам, которые возникали в моделировании от гидромагнитных волн, излучаемых во внутреннем ядре. Эти волны фокусируются и усиливаются по мере приближения к поверхности ядра, вызывая магнитные возмущения, сопоставимые во всех отношениях с наблюдаемыми рывками.

Таким образом, цифровое воспроизведение и понимание геомагнитных рывков прокладывает путь к лучшему прогнозированию поведения магнитного поля Земли. Кроме этого, выявление причины изменений в магнитосфере также помогает геофизикам изучать физические свойства ядра и внутренней мантии нашей планеты.

Арина Васильева
редактор-переводчик


Источник: in-space.ru