Все последние события из жизни вулканологов, сейсмологов Японцев, Американцев и прочих несчастных, которым повезло родиться, жить и умереть в зоне сейсмической активности
Уничтожить астероид оказалось сложнее, чем думали раньше
Популярная тема в фильмах — когда к планете приближается астероид, грозящий уничтожить все живое, и команда супергероев отправляется в космос, чтобы взорвать его. Но приближающиеся астероиды, возможно, сложнее разбить, чем считалось раньше, показывает исследование из Университета Джона Хопкинса. Ученые произвели моделирование столкновения с астероидом и получили новое понимание разрушения каменных пород.
Ее результаты могут помочь в создании стратегий противодействия и отклонения астероидов, улучшить понимание формирования Солнечной системе и помочь в разработке полезных ресурсов на астероидах.
Как уничтожить астероид?
«Раньше мы полагали, что чем больше объект, тем легче его разбить, потому что более крупные объекты с большей вероятностью имеют слабые места. Однако наши результаты показывают, что астероиды прочнее, чем мы считали, и для полного разрушения потребуется больше энергии», говорит Чарльз Эль-Мир, первый автор работы.
Ученые понимают физику материалов — вроде пород — в лабораторных масштабах (изучая их по образцам размером с кулак), но трудно перенести это понимание на объекты размером с город, вроде астероидов. В начале 2000-х другие ученые создали компьютерную модель, в которую можно было ввести различные факторы, такие как масса, температура и хрупкость материала, и смоделировать астероид диаметром около километра, попадающий в целевой астероид диаметром 25 километров на скорости 5 км/с. Их результаты показывали, что целевой астероид будет полностью разрушен в результате попадания.
В новом исследовании Эль-Мир и его коллеги ввели такой же сценарий в новую компьютерную модель Тонге-Рамеша, которая учитывает мелкомасштабные процессы, происходящие во время столкновения, более подробно. Предыдущие модели не учитывали ограниченную скорость распространения трещин в астероидах должны образом.
«Мы задались вопросом: сколько энергии нужно, чтобы на самом деле уничтожить астероид и разбить его на куски», говорит Эль-Мир.
Моделирование было разделено на две фазы: кратковременная фаза фрагментации и долговременная фаза гравитационной реаккумуляции. В первой фазе рассматривались процессы, которые начинаются сразу после попадания астероида в цель, процессы длиной в доли секунды. Вторая фаза, более длинная, подразумевает влияние гравитации на части, которые вылетают с поверхности астероида после удара; через много часов после столкновения происходит также и гравитационная реаккумуляция, астероид пересобирается под действием собственного притяжения.
В первой фазе после поражения астероида на нем образовались миллионы трещин, часть астероида расплавилась, на месте попадания появился кратер. На этом этапе изучались отдельные трещины и прогнозировалось общие закономерности распространения этих трещин. Новая модель показала, что астероид не рассыплется от удара, как считалось ранее. Более того, поскольку астероид не разрушился в первой фазе столкновения, во второй фазе он даже стал сильнее: поврежденные фрагменты перераспределились вокруг большего, нового ядра. По итогам исследования пришлось пересмотреть как энергию, необходимую для разрушения астероида, так и возможные лазейки к недрам астероида для тех, кто хотел бы его разрабатывать.
«Мелкие астероиды довольно часто попадают к нам — вроде события в Челябинские несколько лет назад. Остается лишь вопрос времени, когда эти вопросы перейдут от академических к определению нашего ответа на серьезную угрозу. Мы должны иметь четкое представление о том, что делать, когда наступит время — и научные усилия, подобные этим, имеют решающее значение для принятия решений».