Все последние события из жизни вулканологов, сейсмологов
Японцев, Американцев и прочих несчастных, которым повезло родиться, жить
и умереть в зоне сейсмической активности

Стихия

Землетрясение, Извержения вулканов, Ледяной дождь, Лесные пожары, Ливни, Наводнения, Огненный смерч, Паводок, Смерчи (Торнадо), Тайфуны, Тектонический разлом, Ураганы, Цунами, град, ледоход

Вулканы

Авачинский, Асо, Безымянный, Везувий, Йеллоустоун, Кампи Флегрей, Килауэа, Ключевская Сопка, Мерапи, Мон-Пеле, Невадос-де-Чильян, Питон-де-ла-Фурнез, Сабанкая, Тавурвур, Толбачик, Турриальба, Фуэго, Хурикес, Шивелуч, Этна

Тайфуны

Тайфун Нору

Наводнения

Наводнение в Приморье

Районы вулканической активности

Вулканы Камчатки, Вулканы Мексики, Курилы

Грязевые вулканы и гейзеры

Локбатан

Природа

Вулканы, Изменение климата, Красота природы

Наука

Археология, Вулканология

Наша планета

Живая природа, Спасение животных

Ураганы

Тайфун Мэттью, Ураган Ирма, Ураган Харви, ураган Мария

Районы сейсмической активности

Землетрясение в Италии, Землетрясение в Китае, Землетрясение в Турции

Солнечная система

Венера, Марс, Меркурий, Планета Земля, Плутон, Сатурн, Юпитер

Космос

экзопланеты

Астрономические события

Лунное затмение, Метеориты, Противостояние Марса, Суперлуние

Антропогенные факторы

Климатическое оружие

Землетрясения

Прогноз землетрясений

2019-01-04 11:02

Можем ли мы сделать солнечный экран для борьбы с изменением климата?

глобальное потепление

Обычно такие структуры, как показанный здесь IKAROS, рассматриваются, как потенциальные космические паруса. Но другим их применением, если расположить их в нужной точке, может стать блокирование части солнечного света, что поможет охладить Землю.

Глобальное изменение климата – одна из наиболее неотложных сегодняшних проблем человечества. Наука чрезвычайно ясно говорит, что происходит: Земля разогревается, причиной тому служат испускаемые в результате человеческой деятельности парниковые газы, и концентрация этих газов со временем только продолжает расти, не переставая. И хотя раздаётся множество призывов по уменьшению выбросов, сбору углерода, отказа от ископаемого топлива, мало чего эффективного было сделано. Земля продолжает разогреваться, уровень моря повышается, и глобальный климат изменяется. Можем ли мы предпринять иной подход, и частично закрыть свет, идущий от Солнца? Такой вопрос задаёт нам наш читатель:

Почему бы нам не рассмотреть строительство солнечного экрана в космосе, изменяющего количество света (энергии), приходящей на Землю? Все, испытывавшие полное затмение, знают, что температура уменьшается, а свет приглушается. Идея в том, чтобы сделать что-нибудь, располагающееся между нами и Солнцем целый год.

Это один из наиболее амбициозных, но также и наиболее разумных вариантов, которые мы можем рассмотреть в области борьбы с глобальным изменением климата.

В целом хорошо известно, что увеличение концентрации парниковых газов в атмосфере является причиной глобального потепления, которое, в свою очередь, изменяет климат и погодные закономерности во многих аспектах. Последствия большей их части обычно считаются плохими для большинства людей в мире, поэтому и существует глобальное движение по борьбе с ними. Если не выбирать наиболее популярное решение, о возвращении атмосферных газов Земли к доиндустриальным уровням, то единственными оставшимися у человечества вариантами будут адаптация к изменениям или применение геоинженерных решений.

Проект SPICE будет исследовать осуществимость одной из так называемых геоинженерных техник: стимуляция естественных процессов, выпускающих в стратосферу мелкие частицы, которые будут отражать несколько процентов приходящего к нам солнечного излучения, что охладит Землю. Но тут могут проявиться чрезвычайно нежелательные побочные эффекты.

Последний вариант, геоинженерия, не лишён рисков. Большая часть решений включает в себя дальнейшее изменение поверхности или атмосферы Земли, с по большей части неизвестными и непредсказуемыми последствиями. Из всех геоинженерных вариантов наименее рискованным будет предложенный нашим читателем: запустить что-нибудь в космос подальше от Земли, чтобы блокировать часть солнечного света. С уменьшением солнечного излучения можно контролировать температуру, даже если концентрация парникового газа в атмосфере будет продолжать расти. Если бы мы захотели полностью аннулировать влияние всего глобального потепления, произошедшего с начала промышленной революции, нам пришлось бы навсегда заблокировать примерно 2% солнечного света.

На Земле возможны солнечные затмения, они происходят, когда Луна выстраивается в плоскости Земля-Солнце во время новолуния. Объект может быть меньше или располагаться дальше, и не отбрасывать тени на нашё планету, но при этом уменьшить количество солнечного света, достигающего Земли.

Но, по крайней мере, теоретически, это легче осуществить, чем вам может показаться. Между Землёй и Солнцем существует гравитационно квазистабильная точка, которая, по сути, всегда будет находиться на пути солнечного света. Она известна, как точка Лагранжа L1, и является идеальным местом расположения спутника, который должен оставаться точно между Землёй и Солнцем. Во время движения Земли по орбите вокруг Солнца, объект, расположенный в L1, будет постоянно оставаться между Землёй и Солнцем, и никогда не отклоняться от этой точки в течение года. Её физическое расположение находится в межпланетном пространстве, примерно на 1 500 000 км ближе к Солнцу, чем к Земле.

Контурный график эффективных потенциалов системы Земля-Солнце. Объекты могут находиться на стабильных луноподобных орбитах вокруг Земли, или на квазистабильных орбитах, следуя впереди или за Землёй. Точка L1 идеальна для постоянной блокировки солнечного света.

На таком расстоянии даже объект размером с Землю не отбросит тень на нашу планеты, поскольку конус его тени закончится задолго до того, как дойдёт до нашего мира. Но одна тень, или несколько небольших теней, по сути, заблокируют достаточно света, чтобы уменьшить количество доходящего до Земли излучения. Чтобы достичь уровня уменьшения, достаточного для противостояния глобального потепления, то есть, чтобы уменьшить приходящее излучение на 2%, необходимо будет покрыть площадь в 4,5 млн кв. км. в точке L1. Это эквивалентно размеру объекта, занимающего половину площади поверхности Луны. Но, в отличие от Луны, мы можем поделить его на столько мелких объектов, сколько необходимо.

На рисунке показаны объекты диаметром в 60 см в точке L1. Они прозрачны, но размывают передаваемый свет в форме пончика, как это видно на примере звёзд на фоне. Солнечный свет тоже размывается, и проходит мимо Земли. Такой способ устранения света исключает влияние давления излучения, что в ином случае привело бы у деградации орбиты L1.

Одно из предложений, выдвинутых астрономом из Аризонского университета Роджером Эйнджелом, предлагает запустить группу малых космических кораблей в точку L1. Вместо огромной и тяжёлой структуры это будет массив из 16 триллионов предметов, каждый из которых представляет собой кружок порядка 30 см радиусом. Такой массив способен заблокировать достаточно излучения. Он не создаст никакой тени на Земле, но равномерно уменьшит общее количество света, доходящего до поверхности планеты, что будет равносильно огромному количеству тёмных пятен, рассеянных по поверхности Солнца.

Принцип космической линзы. Основная её функция – смягчить глобальное потепление, преломляя свет так, чтобы он уходил мимо Земли. На самом деле потребуется линза меньше и тоньше, чем показано здесь

Ещё одно предложение, выдвинутое аж в 1989 году Джеймсом Ёарли, состоит в размещении в космосе очень большой линзы. Можно сделать стеклянный щит, работающий, как линза, и рассеивающий большое количество света в сторону от Земли. Огромная космическая линза, или набор маленьких линз, которым надо быть толщиной всего в несколько миллиметров, чтобы преломлять свет, и тогда довольно много света, который мог бы столкнуться с Землёй, будет перемещён в межпланетное пространство. В точке L1 линза (или набор линз) должна будет покрыть порядка миллиона кв. км., чтобы уменьшить солнечную энергию, достигающую Земли, на 2%.

В принципе, звучит просто, и потенциально, это решение проблемы глобального потепления с малым риском и большой пользой. Но с ним есть две проблемы.

Самый первый запуск Falcon Heavy 6 февраля 2018 стал успешным. Ракета достигла низкой орбиты, успешно доставила груз, а главные двигатели вернулись на мыс Кеннеди, где успешно приземлились. Обещание многоразовой ракеты стало реальностью, и оно может снизить стоимость запуска грузов до $2000 за килограмм.

1) Стоимость запуска. Космическая программа человечества в состоянии отправить объект в точку L1. Мы делали это много раз – именно туда отправляются почти все миссии со спутниками, наблюдающими за Солнцем. Но стоимость запуска даже очень тонких и лёгких космических кораблей будет нереальной. Если взять предложение Эйнджела касательно прозрачных тонких плёнок, и каждая плёнка будет толщиной всего в 1/200 мм и весить один грамм, общая масса их составит 20 млн тонн. Даже если стоимость запусков технологий следующего поколения, таких, как Falcon Heavy, сможет снизиться до $2000 за кг (в десять раз меньше, чем сейчас), у нас всё равно получатся сотни миллиардов долларов. А мы ещё не дошли до второй проблемы.

НАСА задумало спутник солнечной энергии в 1970-х. Если в точке L1 разместить несколько спутников для сбора солнечной энергии, они смогут не только блокировать часть солнечного света, но и обеспечить полезную энергию для других целей. Но точка L1 нестабильна.

2) Орбитальная стабильность. Точка L1 лишь квазистабильна, то есть, либо всё, что мы туда запускаем, необходимо поддерживать при помощи двигателей на нужной орбите, либо оно в итоге уплывёт оттуда и перестанет блокировать солнечный свет. И это случится слишком быстро по нашим меркам: на временных отрезках от нескольких лет до нескольких десятилетий, в зависимости от успешности изначального вывода на орбиту. А это значит, что для блокирования света нам понадобятся расходы в десятки миллиардов долларов в год только для поддержки запусков: а это сравнимо с ежегодным бюджетом НАСА. И это только если стоимость запусков уменьшиться в 10 раз от сегодняшней.

Так же, как тень на Земле может понизить температуру, уменьшив количество приходящего солнечного света, так и несколько блокирующих свет аппаратов в космосе могут уменьшить количество света, доходящего до Земли

Большое преимущество удалённого блокирования света состоит в отсутствии риска появления долговременных отрицательных эффектов на Земле, связанных с геоинженерными решениями. Другие идеи, такие, как крупномасштабное изменение атмосферы, множество спутников на низкой орбите вокруг Земли, впрыск формирующих облака веществ или отражающих частиц в небо или океан, потенциально могут иметь катастрофические непредсказуемые последствия. Но самыми большими препятствиями сегодня являются проблемы стоимости и долговременной стабильности.

Концентрацию диоксида углерода в атмосфере Земли можно определить как по измерениям ледяных кернов, так и благодаря станциям отслеживания атмосферы. Увеличение количества CO2в атмосфере с середины XVIII века поражает, и продолжает идти, не ослабевая.

Тем временем, планета продолжает разогреваться, уровень CO2 продолжает расти, и никаких эффективных стратегий для изменения ситуации не существует. Идеи таких экранов, которые обычно называют "космическим тентом", могут стать наилучшим нашим вариантом. И хотя его стоимость невозможно высока, в долгосрочной перспективе это может стать наиболее дешёвым вариантом, который мы захотим реализовать. Но годы, десятилетия, века и тысячелетия проходят, и нашим потомкам придётся иметь дело с последствиями наших действий или бездействия в течение следующих поколений.

По материалам: habr.com


Источник: m.vk.com