За доказательство невозможности существования этой модификации в 1954 году была присуждена Нобелевская премия.
Российские ученые совместно с немецкими и шведскими коллегами совершили фундаментальное, если не сказать сенсационное, открытие в области кристаллохимии. Они обнаружили экспериментально и объяснили теоретически новую форму вещества, существование которой раньше считалось невозможным. В новом варианте элементы кристаллической решетки соединены не вершинами, а гранями.
Обнаружение новой формы вещества сулит революцию в области материаловедения и его инженерных приложений. Ученые предсказывают создание сверхтвердых и сверхтугоплавких материалов, а также прорыв в области предсказания землетрясений.
В первой половине прошлого века великий американский химик Лайнус Полинг сформулировал несколько фундаментальных правил, которым подчиняется кристаллическая форма вещества. Эти правила считались незыблемыми почти 65 лет, в 1954-м году за их открытие была присуждена Нобелевская премия. Однако спустя более чем полвека выяснилось, что из правил Полинга всё же есть исключения.
Недавно коллаборация ученых из России, Швеции, Германии, США и Франции экспериментально и теоретически доказала существование кристаллов, образующих устойчивую форму вопреки правилам Полинга.
Материал, который был нами синтезирован, по всем представлениям на сегодняшний день не должен существовать. Ведь любая система стремится к устойчивому состоянию при минимальном значении ее потенциальной энергии, а мы получили устойчивое состояние при значениях этого показателя далеких от минимума.
Игорь Абрикосов
российский участник коллаборации, научный руководитель лаборатории разработки моделирования новых материалов НИТУ «МИСиС»
Это можно сравнить с игрой в гольф на неровном поле: мяч всегда стремится скатиться с холма в низину, в минимум своей потенциальной энергии. Но иногда лунка находится на вершине холма. Если изловчиться и очень точно попасть в нее мячом, то он останется на холме, и несмотря на большую потенциальную энергию, это состояние окажется устойчивым. Можно сказать, ученые сумели забросить мяч в такую лунку.
Для этого физики-экспериментаторы, входящие в коллаборацию, взяли кристалл коэсита (одна из форм оксида кремния SiO2) размером примерно с треть толщины человеческого волоса, поместили в ячейку с алмазными наковальнями и подвергли гигантскому давлению, примерно 700 тыс. атмосфер. В результате в кристалле произошли четыре фазовых перехода, причем два из них были обнаружены впервые.
Только недавно ученые нашли способы сохранять качество кристаллов в условиях высоких давлений. Кроме того, в последнее время сильно шагнули вперед методы сбора данных, позволившие получать информацию даже с таких миниатюрных кристаллов, как в нашем эксперименте.
Елена Быкова
научный сотрудник Германского электронного синхротрона (Deutsches Elektronen-Synchrotron, DESY)
В результате опытов ученые обнаружили, что в двух новонайденных формах оксида кремния атомы кристаллической решетки — вопреки правилам Полинга — соединены друг с другом не вершинами или ребрами, а гранями. Это означает существование высокоэнергетических «лунок» на том «поле для гольфа», которое представляет собой кристаллическое вещество. И это открытие, по прогнозам ученых, позволит создавать новые материалы с недоступными прежде свойствами.
— Мы сейчас даже представить не можем возможности тех материалов, которые будут созданы с помощью новых знаний, полученных коллегами. Как никто не знал свойства наноматериалов, пока их не сделали, — подчеркнул председатель научного совета РАН по химической термодинамике и термохимии Константин Гавричев. — Вероятно, теперь удастся создать совершенно новые сверхтвердые и сверхтугоплавкие формы вещества. А ведь в наше время тот, кто владеет материалами — тот владеет миром.
Игорь Абрикосов надеется, что дальнейшие исследования позволят, в частности, создать новые устойчивые формы перовскита — материала, применяемого в солнечных батареях, и это произведет переворот в зеленой энергетике.
Кроме того, открытие новой формы оксида кремния будет крайне интересно геохимикам и геофизикам. По их оценкам, концентрация кремнесодержащих соединений в мантии Земли составляет более 45%, причем давление в этом слое — примерно того же порядка, что и в описываемом эксперименте.
По мнению Константина Гавричева, теперь можно будет наконец полностью разобраться в природе этих волн и приблизиться к тому, чего человечество давно ждет от ученых: умению точно предсказывать землетрясения.
Источник: news.mail.ru