Все последние события из жизни вулканологов, сейсмологов
Японцев, Американцев и прочих несчастных, которым повезло родиться, жить
и умереть в зоне сейсмической активности

Стихия

Землетрясение, Извержения вулканов, Ледяной дождь, Лесные пожары, Ливни, Наводнения, Огненный смерч, Паводок, Смерчи (Торнадо), Тайфуны, Тектонический разлом, Ураганы, Цунами, град, ледоход

Вулканы

Авачинский, Бромо, Булусан, Везувий, Иджен, Йеллоустоун, Карымский, Килауэа, Ключевская Сопка, Мерапи, Невадос-де-Чильян, Питон-де-ла-Фурнез, Сабанкая, Тавурвур, Толбачик, Турриальба, Фуэго, Хурикес, Шивелуч, Этна

Тайфуны

Тайфун Нору

Наводнения

Наводнение в Приморье

Районы вулканической активности

Вулканы Камчатки, Вулканы Мексики, Курилы

Грязевые вулканы и гейзеры

Локбатан

Природа

Вулканы, Изменение климата, Красота природы

Наука

Археология, Вулканология

Наша планета

Живая природа, Спасение животных

Ураганы

Тайфун Мэттью, Ураган Ирма, Ураган Харви, ураган Мария

Районы сейсмической активности

Землетрясение в Италии, Землетрясение в Китае, Землетрясение в Турции

Солнечная система

Венера, Марс, Меркурий, Планета Земля, Плутон, Сатурн, Юпитер

Космос

экзопланеты

Астрономические события

Лунное затмение, Метеориты, Противостояние Марса, Суперлуние

Антропогенные факторы

Климатическое оружие

Землетрясения

Прогноз землетрясений

2018-02-01 23:52

НАСА научилось динамически устранять пикометровые искажения с оптики телескопа

В «чистой комнате» Центра космических полетов Годдарда техники раскрывают сегментированное зеркало обсерватории Джеймса Уэбба в рамках подготовки к тесту юстировки летом 2016 года. Фото: NASA/Chris Gunn

Чтобы найти и определить характеристики десятков экзопланет, похожих на Землю, требуется очень стабильный космический телескоп, оптические компоненты которого двигаются и искажают картинку не более чем на несколько пикометров — это меньше, чем размер атома. Требуются и инструменты нового поколения, способные гарантировать такой уровень стабильности. Полтора года назад НАСА выделило финансирование научно-исследовательской группе в Центре космических полетов Годдарда и компании 4-D Technology на создание высокоскоростного интерферометра, который должен обеспечить пикометровую стабильность телескопа. Такую задачу раньше не удавалось решить никому.

Как и во всех интерферометрах, здесь световой пучок разделяется на несколько когерентных пучков. Каждый из них проходит свой путь, а затем они снова объединяются, создавая интерференционную картину, по которой можно установить разность фаз интерферирующих пучков в данной точке картины. Так можно зарегистрировать малейшее движение или смещение материала. Такой интерферометр использовали при юстировке 18 зеркал обсерватории Джеймса Уэбба.

В НАСА решили, что замерять только поверхность зеркал недостаточно. Поэтому в Центре космических полетов Годдарда совместно с компанией 4-D Technology разработали продвинутый динамический лазерный интерферометр, который одновременно регистрирует смещения не только зеркал, но и их креплений и других конструктивных компонентов, работая в условиях вибрации, шума или воздушной турбулентности. Инструмент был на четыре порядка точнее, чем любая подобная техника в то время. Вскоре после его создания инструмент сразу же начали использовать в лабораториях, чистых комнатах и испытательных камерах всех участников проекта.

Но этого тоже было недостаточно для выполнения космических миссий типа LUVOIR (Large UV Optical Infrared Surveyor). Концепция предполагает, что большие зеркала диаметром 8?18 м покрывают одновременно ультрафиолетовый, видимый и инфракрасный диапазоны длин волн. Телескопы LUVOIR смогут анализировать структуру и состав поверхности экзопланет, а также снимать слабые околозвёздные диски, чтобы дать представление о том, как формируются планеты. Более того, такие телескопы смогут определять биосигнатуры в атмосферах удалённых экзопланет: содержание CO2, CO, молекулярного кислорода (O2), озона (O3), воды (H2O) и метана (CH4).

Съёмка одновременно в разных спектрах LUVOIR поможет понять, как УФ-излучение материнской звезды регулирует атмосферную фотохимию на обитаемых планетах.

25 января 2018 года научно-исследовательская группа в Центра космических полетов Годдарда объявила о создании инструмента, который сделает возможным пикометровую точность телескопа. Этот первый в своём роде уникальный инструмент такого рода — спекл-интерферометр (speckle interferometer).


Эксперты по оптике Центра Годдарда Бабак Сальф (слева), и Ли Фейнберг (справа) при помощи инженера Эли Гри-МакМахона (в центре) из компании Genesis разработали Систему ультрастабильного теплового вакуума (Ultra-Stable Thermal Vacuum system), которую будут использовать для проверки измерений интерферометра с точностью 12 пикометров

Учёные продемонстрировали, что новый интерферометр способен динамически регистрировать смещения на 1,5-метровом сегментированном зеркале телескопа и его опорной конструкции с точностью 25 пикометров.

Такие смещения атомного масштаба на отдельных участках зеркала могут происходить из-за изменения температуры или в результате «неаккуратной» транспортировки с Земли, когда ракета-носитель разгоняется с ускорением 6,5 g. Учёные говорят, что даже смещение на один атом повлияет на точность измерения атмосферы и поверхности удалённых экзопланет.

Разработчики теперь собираются протестировать интерферометр в установке ультрастабильного теплового вакуума — и посмотреть, способен ли он регистрировать смещения в 12 пикометров, то есть в 1/10 диаметра атома водорода.


Источник: geektimes.ru