Все последние события из жизни вулканологов, сейсмологов
Японцев, Американцев и прочих несчастных, которым повезло родиться, жить
и умереть в зоне сейсмической активности

Стихия

Землетрясение, Извержения вулканов, Ледяной дождь, Лесные пожары, Ливни, Наводнения, Огненный смерч, Паводок, Смерчи (Торнадо), Тайфуны, Тектонический разлом, Ураганы, Цунами, град, ледоход

Вулканы

Авачинский, Безымянный, Бромо, Везувий, Даллол, Иджен, Йеллоустоун, Кальбуко, Карымский, Килауэа, Ключевская Сопка, Мерапи, Мутновский, Невадос-де-Чильян, Ньирагонго, Толбачик, Фуэго, Хурикес, Шивелуч, Этна

Тайфуны

Тайфун Нору

Наводнения

Наводнение в Приморье

Районы вулканической активности

Вулканы Камчатки, Вулканы Мексики, Курилы

Грязевые вулканы и гейзеры

Локбатан

Природа

Вулканы, Изменение климата, Красота природы

Наука

Археология, Вулканология

Наша планета

Живая природа, Спасение животных

Ураганы

Тайфун Мэттью, Ураган Ирма, Ураган Харви, ураган Мария

Районы сейсмической активности

Землетрясение в Италии, Землетрясение в Китае, Землетрясение в Турции

Солнечная система

Венера, Марс, Меркурий, Планета Земля, Плутон, Сатурн, Юпитер

Космос

экзопланеты

Астрономические события

Лунное затмение, Метеориты, Противостояние Марса, Суперлуние

Антропогенные факторы

Климатическое оружие

Землетрясения

Прогноз землетрясений

2017-11-24 10:37

Атомный газ обменялся с кристаллом квантовыми состояниями

Nicolas Maring et. al. / Nature

Испанские ученые впервые передали с помощью фотонов квантовые состояния между облаком холодных атомов рубидия-87 и кристаллом Pr3+:Y2SiO5. Статья опубликована в Nature.

Чтобы построить квантовую сеть, необходимо не только сохранять квантовые состояния в течение долгого времени, но и передавать их между узлами сети. Удобнее всего использовать для этого фотоны, поскольку их легко передать на большие расстояния. К тому же для этого можно использовать широко распространенные оптоволоконные сети. На данный момент ученым уже удалось передать состояния между атомными ансамблями, одиночными атомами, пойманными в ловушку, или квантовыми кристаллами.

Каждый из способов, использованных для сохранения квантовых состояний в этих экспериментах, имеет свои достоинства и недостатки. В то же время, в сложной квантовой системе хотелось бы использовать преимущества различных подходов. Ученые уже пытались построить гибридную сеть, например, связывая холодные облака ионов 9Be+ и 25Mg+. Однако во всех предыдущих экспериментах квантовые состояния передавались с помощью электрического взаимодействия или микроволновых фотонов, и расстояние передачи было сильно ограниченно. На этот раз физики связали квантовые системы принципиально различной природы с помощью фотонов, частота которых лежит в телекоммуникационном диапазоне (то есть наиболее удобна для оптоволоконной связи).

Схема экспериментальной установки

Nicolas Maring et. al. / Nature

Экспериментальная установка разделялась на две части, соединенных десятиметровым оптическим кабелем. В одной ее части ученые удерживали в магнитооптической ловушке облако холодных ионов 87Rb. Время от времени исследователи светили на это облако лазером, и в результате в нем возникали спиновые волны, отвечающие некоторому долгоживущему квантовому состоянию. Спустя некоторое время облако излучало скоррелированные одиночные фотоны. Эти фотоны физики разделяли на два потока, один из которых регистрировали с помощью детектора D1, а другой направляли в специальное устройство (quantum frequency conversion device), которое изменяло длину волны частиц с 780 до 1552 нанометров. Затем фотоны направлялись в оптоволоконный кабель и попадали в другую часть установки, расположенную в соседней лаборатории.

Здесь фотоны снова меняли длину волны с 1552 до 606 нанометров и направлялись на кристалл ортосиликата иттрия Y2SiO5, легированный ионами  Pr3+ и охлажденный до температуры 3,5 Кельвинов. Для записи и хранения состояний в кристалле ученые использовали атомную частотную гребенку. Этот принцип использует световые волны, спектр которых имеет ярко выраженные линии поглощения, отстоящие друг от друга на равное расстояние (поэтому спектр напоминает гребенку, расческу). В данном случае ширина гребенки составила 400 мегагерц, а расстояние между зубьями – 400 килогерц (что отвечает линиям поглощения Pr3+). В результате фотоны сохранялись в такой системе в течение 2,5 микросекунд, а затем заново излучались. Наконец, полученные фотоны физики регистрировали с помощью детектора D2. 

Зависимость функции взаимной корреляции от вероятности возбуждения фотонов

Nicolas Maring et. al. / Nature

Затем ученые проверили, связаны или нет фотоны, пойманные детекторами D1 и D2. Для этого они рассчитали функцию их взаимной корреляции для различных вероятностей возбуждения фотонов. Оказалось, что при вероятности около пяти процентов скоррелированность фотонов составила примерно gw,r(2) = 11,4 ± 2,4, что указывало на сохранение квантового состояния при передаче. При увеличении вероятности скоррелированность быстро падала до классического предела gw,r(2) = 2. Так или иначе, этот эксперимент показал, что квантовые состояния между кубитами разной природы передать можно.

Ранее физики уже получали запутанные фотоны с длинами волн, лежащими в телекоммуникационном диапазоне, лучше всего подходящим для передачи по существующим каналам связи. Также мы писали о том, как физики из Российского Квантового Центра построили и улучшили сеть для квантовых коммуникаций, работающую в городских условиях.

Дмитрий Трунин


Источник: nplus1.ru