Все последние события из жизни вулканологов, сейсмологов
Японцев, Американцев и прочих несчастных, которым повезло родиться, жить
и умереть в зоне сейсмической активности

Стихия

Землетрясение, Извержения вулканов, Ледяной дождь, Лесные пожары, Ливни, Наводнения, Огненный смерч, Паводок, Смерчи (Торнадо), Тайфуны, Тектонический разлом, Ураганы, Цунами, град, ледоход

Вулканы

Авачинский, Асо, Безымянный, Везувий, Йеллоустоун, Кампи Флегрей, Килауэа, Ключевская Сопка, Мерапи, Мон-Пеле, Невадос-де-Чильян, Питон-де-ла-Фурнез, Сабанкая, Тавурвур, Толбачик, Турриальба, Фуэго, Хурикес, Шивелуч, Этна

Тайфуны

Тайфун Нору

Наводнения

Наводнение в Приморье

Районы вулканической активности

Вулканы Камчатки, Вулканы Мексики, Курилы

Грязевые вулканы и гейзеры

Локбатан

Природа

Вулканы, Изменение климата, Красота природы

Наука

Археология, Вулканология

Наша планета

Живая природа, Спасение животных

Ураганы

Тайфун Мэттью, Ураган Ирма, Ураган Харви, ураган Мария

Районы сейсмической активности

Землетрясение в Италии, Землетрясение в Китае, Землетрясение в Турции

Солнечная система

Венера, Марс, Меркурий, Планета Земля, Плутон, Сатурн, Юпитер

Космос

экзопланеты

Астрономические события

Лунное затмение, Метеориты, Противостояние Марса, Суперлуние

Антропогенные факторы

Климатическое оружие

Землетрясения

Прогноз землетрясений

2017-01-11 09:09

«Джеймс Уэбб» почти готов: НАСА предлагает ученым присылать предложения для работы с телескопом

 Практически сразу после запуска на орбиту телескопа «Хаббл» ученые стали готовить более продвинутое устройство, которое планировалось оснастить большим количеством функций и возможностей. Сейчас, почти двадцать лет спустя, этот проект уже реализован, а система прошла испытания и готова к работе. Речь идет об орбитальном телескопе «Джеймс Уэбб», который оснащен 6,5-метровым зеркалом. Это в два раза больше, чем у «Хаббла».

В конце прошлого года научный руководитель проекта Джон Мэтер (John Mather) заявил о том, что телескоп уже готов и вполне способен начать работу на орбите. По словам экспертов, принимающих участие в реализации проекта, новый телескоп поможет начать изучение галактик, которые удалены от Земли на миллиарды световых лет. Речь идет о возможности воспользоваться своеобразной машиной времени, наблюдая за галактиками, которые появились почти сразу после Большого Взрыва. Это поможет ученым прояснить происхождение Вселенной.

Недавние проблемы и их решение

Сборка основных зеркал телескопа была завершена еще в феврале прошлого года. Тогда агентство НАСА заявило о успешной установке последнего фрагмента. Каждый из фрагментов шестиугольной формы с массой 40 кг имеет диаметр около 1,3 м. Из фрагментов и составлено основное зеркало диаметром в 6,5 метра. Создано оно из бериллия, который покрыли золотой пленкой.
Установка зеркал производилась не людьми, а роботом — для этой цели был разработан специализированный манипулятор. На зеркале, кроме самих зеркал, ученые установили сервоприводы и распорки, которые корректируют кривизну поверхности. По словам специалистов, для того, чтобы фокусировка была точной, крепеж не может смещаться более, чем на 38 нанометров.

В ноябре прошлого года ученые начали проводить проверку зеркал — это крайне важный этап, позволявший судить о работоспособности устройства. При проведении тестов специалисты симулировали внешние факторы, которые могли бы повредить конструкцию. В первую очередь, речь идет о звуке и вибрации, генерируемые при запуске корабля — эти факторы без должного к ним внимания вполне могут вывести телескоп из строя. Вообще говоря, отправка «Джеймса Уэбба» на орбиту — сложный этап, во время которого может случиться много неприятностей, если тщательно не контролировать все составляющие процесса отправки.

«Проверка покажет, появились ли какие-либо повреждения оптической системы после проведения теста», — заявил в свое время Ритва Кески-Куха (Ritva Keski-Kuha), глава испытаний телескопа в Центре космических полетов имени Годдарда НАСА (Goddard Space Flight Center, GSFC).

Для проверки был использован интерферометр, устройство, позволяющее определять характеристики зеркала телескопа с чрезвычайно высокой точностью. Проблема в том, что для проверки нельзя непосредственно контактировать с зеркалом, все тесты нужно выполнять удаленно. В противном случае на зеркале могут появиться микроцарапиины, что приведет к падению эффективности работы всей системы.

«Вот для чего мы проводим проверку — чтобы знать, как обстоят дела на самом деле, вместо того, чтобы предполагать», — заявил заместитель руководителя проекта Пол Гейтнер (Paul Geithner).

Интерферометр решает эту проблему. Он позволяет регистрировать мельчайшие изменения в расположении элементов сложного зеркала телескопа и характеристиках поверхности отдельных фрагментах. Интерферометр генерирует световые волны разной длины, характеристики которых после отражения зеркалом изучаются экспертами.

«Предыдущие четыре года можно назвать подготовкой к текущему тесту», — заявил в ноябре прошлого года Дэвид Чейни, главный специалист по метрологии зеркал в Центре космических полетов Годдарда. «Мы измеряем размер главного зеркала, радиус его кривизны, фоновый шум. Наш тест настолько чувствительный, что мы фиксируем изменения в характеристиках зеркала даже тогда, когда люди говорят в помещении».

В ноябре испытания прошли гладко, проблем не было выявлено. Но вот в начале декабря акселерометры, которые были подключены к телескопу, уловили некие аномалии во время прохождения устройством вибрационных тестов. Ученые провели низкоуровневые вибрационные тесты, сравнивая полученные данные с теми, что передавались датчиками до появления аномалии. После того, как была выявлена проблема, тест автоматически прекратился для защиты аппаратной части устройства. Ученые изучили в очередной раз изучили телескоп, но не нашли никаких отклонений.

В конце декабря представители НАСА заявили о том, что в приборах и прочих компонентах системы не найдено проблем. Выполнялся как визуальный осмотр, так и анализ снимков устройства в ультрафиолетовом излучении. Кроме того, было проведено два дополнительных вибрационных низкоуровневых тестов, которые также не выявили проблем с телескопом «Джеймс Уэбб». Подробнее о тестировании можно узнать из документа, подготовленного специалистами НАСА.

В декабре же Джон Мэтер сообщил о том, что участники проекта ожидают успешного прохождения телескопом всех необходимых тестов. При этом агентство планирует задействовать любые доступные методы предосторожности для того, чтобы обеспечить удачный вывод телескопа на орбиту. Пока что, к сожалению, не совсем понятно, что это были за аномалии и как они могут повлиять на систему во время отправки ее в космос. Окончательные выводы будут сформированы агентством в конце этого месяца.

В середине этого года «Джеймс Уэбб» будет отправлен в один из филиалов компании Нортроп-Грумман для финальной сборки и соединения с солнечным экраном, а также системой маневрирования на орбите. Перед этим оптическая система телескопа и научные инструменты будут тестироваться в термальной вакуумной камере Космического Центра Джонсона.

Пока что участники программы выказывают оптимизм. «Мы не думаем, что столкнемся с чем-то, что будет сложно исправить», — говорит Пол Герц.

Астрономы могут готовить свои предложения по работе с телескопом

На 229 встрече Американского астрономического сообщества представители проекта сообщили о том, что ученые могут начать подавать заявки относительно предлагаемых методов эксплуатации телескопа. Непосредственная работа телескопа начнется в апреле 2019 года, спустя полгода после запланированного запуска этой системы. В течение полугода будут выполняться различные тестовые процедуры и проверки, если все пройдет, как запланировано, то ученые смогут реализовать свои идеи.
«Меня это впечатляет», — говорит Эрик Смит, руководитель программы. Дело в том, что все прошедшие годы команда занималась исключительно технической стороной дела, а не наукой. А теперь можно переходить к финальному этапу и заниматься научной работой. «Этот год дает возможность научному сообществу вернуться к работе над программой».

На встрече, о которой шла речь выше, руководство программы заявило, что ученые, которые принимали участие в разработке инструментов, программного обеспечения или различных функций телескопа «Джеймс Уэбб», смогут получить гарантированное время работы с телескопом. Кроме того, ранний доступ к возможностям системы будет предоставлен тем ученым, которые подадут интересные заявки, обеспечивающие возможность демонстрации полной функциональности телескопа для научного сообщества. В результате другие ученые смогут понять, как лучше всего использовать функциональность «Джеймса Уэбба» для наблюдений за Вселенной, и отправят собственные предложения. Во всяком случае, такова задумка. «Обычные» предложения ученые смогут отправлять в конце 2017 года.

Сейчас же специалисты, которые принимают участие в разработке системы, продолжают проводить тестирование телескопа, включая оптическую часть и научные инструменты. Проверки производятся в Центре космических полетов имени Годдарда.

Компоненты телескопа и его возможности

«Джеймс Уэбб» очень сложная система, которая состоит из тысяч отдельных элементов. Они формируют зеркало телескопа и его научные инструменты. Что касается последних, то это такие устройства:
  • Камера ближнего инфракрасного диапазона (Near-Infrared Camera);
  • Прибор для работы в среднем диапазоне инфракрасного излучения (Mid-Infrared Instrument);
  • Спектрограф ближнего инфракрасного диапазона (Near-Infrared Spectrograph);
  • Датчик точного наведения c устройством формирования изображения в ближнем инфракрасном диапазоне и бесщелевым спектрографом (Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph).

Эти инструменты будут выполнять такие научные задачи, как:
  • обнаружение света от самых ранних звёзд и галактик на стадии их формирования;
  • изучение звёздных населений в ближайших галактиках;
  • изучение молодых звёзд Млечного Пути и объектов пояса Койпера;
  • определение морфологии и цвета галактик при сильном красном смещении;
  • определение кривых блеска дальних сверхновых;
  • создание карты тёмной материи с помощью гравитационного линзирования;
  • обнаружение «первого света»;
  • обнаружение экзопланет;
  • получение их характеристик;
  • транзитная спектроскопия.

Что дальше?

По словам Эрика Смита, проект остается в рамках бюджета. Пока что все идет по плану и нет никаких препятствий, которые могли бы помешать запуску телескопа в октябре 2018 года. Единственная обнаруженная проблема — вибрационные аномалии — уже близка к разрешению, специалисты активно работают над тем, чтобы провести финальную локализацию проблемы и избавиться от нее. Но, конечно, сложности еще могут возникнуть. «Сейчас мы на той стадии программы, когда мы сталкиваемся с новыми вызовами, отличными от тех проблем, которые возникали до настоящего момента», — говорит Смит. Но, в тоже время, он уверен в силах команды: «Когда возникают проблемы, я уверен в том, что команда может решить их».

Источник: geektimes.ru