Практически сразу после запуска на орбиту телескопа «Хаббл» ученые стали готовить более продвинутое устройство, которое планировалось оснастить большим количеством функций и возможностей. Сейчас, почти двадцать лет спустя, этот проект уже реализован, а система прошла испытания и готова к работе. Речь идет об орбитальном телескопе «Джеймс Уэбб», который оснащен 6,5-метровым зеркалом. Это в два раза больше, чем у «Хаббла».
В конце прошлого года научный руководитель проекта Джон Мэтер (John Mather) заявил о том, что телескоп уже готов и вполне способен начать работу на орбите. По словам экспертов, принимающих участие в реализации проекта, новый телескоп поможет начать изучение галактик, которые удалены от Земли на миллиарды световых лет. Речь идет о возможности воспользоваться своеобразной машиной времени, наблюдая за галактиками, которые появились почти сразу после Большого Взрыва. Это поможет ученым прояснить происхождение Вселенной.
Недавние проблемы и их решение
Сборка основных зеркал телескопа была завершена еще в феврале прошлого года. Тогда агентство НАСА заявило о успешной установке последнего фрагмента. Каждый из фрагментов шестиугольной формы с массой 40 кг имеет диаметр около 1,3 м. Из фрагментов и составлено основное зеркало диаметром в 6,5 метра. Создано оно из бериллия, который покрыли золотой пленкой.
Установка зеркал производилась не людьми, а роботом — для этой цели был разработан специализированный манипулятор. На зеркале, кроме самих зеркал, ученые установили сервоприводы и распорки, которые корректируют кривизну поверхности. По словам специалистов, для того, чтобы фокусировка была точной, крепеж не может смещаться более, чем на 38 нанометров.
В ноябре прошлого года ученые начали проводить проверку зеркал — это крайне важный этап, позволявший судить о работоспособности устройства. При проведении тестов специалисты симулировали внешние факторы, которые могли бы повредить конструкцию. В первую очередь, речь идет о звуке и вибрации, генерируемые при запуске корабля — эти факторы без должного к ним внимания вполне могут вывести телескоп из строя. Вообще говоря, отправка «Джеймса Уэбба» на орбиту — сложный этап, во время которого может случиться много неприятностей, если тщательно не контролировать все составляющие процесса отправки.
«Проверка покажет, появились ли какие-либо повреждения оптической системы после проведения теста», —
заявил в свое время Ритва Кески-Куха (Ritva Keski-Kuha), глава испытаний телескопа в Центре космических полетов имени Годдарда НАСА (Goddard Space Flight Center, GSFC).
Для проверки был использован интерферометр, устройство, позволяющее определять характеристики зеркала телескопа с чрезвычайно высокой точностью. Проблема в том, что для проверки нельзя непосредственно контактировать с зеркалом, все тесты нужно выполнять удаленно. В противном случае на зеркале могут появиться микроцарапиины, что приведет к падению эффективности работы всей системы.
«Вот для чего мы проводим проверку — чтобы знать, как обстоят дела на самом деле, вместо того, чтобы предполагать», —
заявил заместитель руководителя проекта Пол Гейтнер (Paul Geithner).
Интерферометр решает эту проблему. Он позволяет регистрировать мельчайшие изменения в расположении элементов сложного зеркала телескопа и характеристиках поверхности отдельных фрагментах. Интерферометр генерирует световые волны разной длины, характеристики которых после отражения зеркалом изучаются экспертами.
«Предыдущие четыре года можно назвать подготовкой к текущему тесту», —
заявил в ноябре прошлого года Дэвид Чейни, главный специалист по метрологии зеркал в Центре космических полетов Годдарда. «Мы измеряем размер главного зеркала, радиус его кривизны, фоновый шум. Наш тест настолько чувствительный, что мы фиксируем изменения в характеристиках зеркала даже тогда, когда люди говорят в помещении».
В ноябре испытания прошли гладко, проблем не было выявлено. Но вот в начале декабря акселерометры, которые были подключены к телескопу, уловили некие аномалии во время прохождения устройством вибрационных тестов. Ученые провели низкоуровневые вибрационные тесты, сравнивая полученные данные с теми, что передавались датчиками до появления аномалии. После того, как была выявлена проблема, тест автоматически прекратился для защиты аппаратной части устройства. Ученые изучили в очередной раз изучили телескоп, но не нашли никаких отклонений.
В конце декабря представители НАСА заявили о том, что в приборах и прочих компонентах системы не найдено проблем. Выполнялся как визуальный осмотр, так и анализ снимков устройства в ультрафиолетовом излучении. Кроме того, было проведено два дополнительных вибрационных низкоуровневых тестов, которые также не выявили проблем с телескопом «Джеймс Уэбб». Подробнее о тестировании можно узнать из
документа, подготовленного специалистами НАСА.
В декабре же Джон Мэтер сообщил о том, что участники проекта ожидают успешного прохождения телескопом всех необходимых тестов. При этом агентство планирует задействовать любые доступные методы предосторожности для того, чтобы обеспечить удачный вывод телескопа на орбиту. Пока что, к сожалению, не совсем понятно, что это были за аномалии и как они могут повлиять на систему во время отправки ее в космос. Окончательные выводы будут сформированы агентством в конце этого месяца.
В середине этого года «Джеймс Уэбб» будет отправлен в один из филиалов компании Нортроп-Грумман для финальной сборки и соединения с солнечным экраном, а также системой маневрирования на орбите. Перед этим оптическая система телескопа и научные инструменты будут тестироваться в термальной вакуумной камере Космического Центра Джонсона.
Пока что участники программы выказывают оптимизм. «Мы не думаем, что столкнемся с чем-то, что будет сложно исправить», —
говорит Пол Герц.
Астрономы могут готовить свои предложения по работе с телескопом
На 229 встрече Американского астрономического сообщества представители проекта сообщили о том, что ученые могут начать подавать заявки относительно предлагаемых методов эксплуатации телескопа. Непосредственная работа телескопа начнется в апреле 2019 года, спустя полгода после запланированного запуска этой системы. В течение полугода будут выполняться различные тестовые процедуры и проверки, если все пройдет, как запланировано, то ученые смогут реализовать свои идеи.
«Меня это впечатляет», — говорит Эрик Смит, руководитель программы. Дело в том, что все прошедшие годы команда занималась исключительно технической стороной дела, а не наукой. А теперь можно переходить к финальному этапу и заниматься научной работой. «Этот год дает возможность научному сообществу вернуться к работе над программой».
На встрече, о которой шла речь выше, руководство программы заявило, что ученые, которые принимали участие в разработке инструментов, программного обеспечения или различных функций телескопа «Джеймс Уэбб», смогут получить гарантированное время работы с телескопом. Кроме того, ранний доступ к возможностям системы будет предоставлен тем ученым, которые подадут интересные заявки, обеспечивающие возможность демонстрации полной функциональности телескопа для научного сообщества. В результате другие ученые смогут понять, как лучше всего использовать функциональность «Джеймса Уэбба» для наблюдений за Вселенной, и отправят собственные предложения. Во всяком случае, такова задумка. «Обычные» предложения ученые смогут отправлять в конце 2017 года.
Сейчас же специалисты, которые принимают участие в разработке системы, продолжают проводить тестирование телескопа, включая оптическую часть и научные инструменты. Проверки производятся в
Центре космических полетов имени Годдарда.
Компоненты телескопа и его возможности
«Джеймс Уэбб» очень сложная система, которая состоит из тысяч отдельных элементов. Они формируют зеркало телескопа и его научные инструменты. Что касается последних, то это такие устройства:
- Камера ближнего инфракрасного диапазона (Near-Infrared Camera);
- Прибор для работы в среднем диапазоне инфракрасного излучения (Mid-Infrared Instrument);
- Спектрограф ближнего инфракрасного диапазона (Near-Infrared Spectrograph);
- Датчик точного наведения c устройством формирования изображения в ближнем инфракрасном диапазоне и бесщелевым спектрографом (Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph).
Эти инструменты будут выполнять такие научные задачи, как:
- обнаружение света от самых ранних звёзд и галактик на стадии их формирования;
- изучение звёздных населений в ближайших галактиках;
- изучение молодых звёзд Млечного Пути и объектов пояса Койпера;
- определение морфологии и цвета галактик при сильном красном смещении;
- определение кривых блеска дальних сверхновых;
- создание карты тёмной материи с помощью гравитационного линзирования;
- обнаружение «первого света»;
- обнаружение экзопланет;
- получение их характеристик;
- транзитная спектроскопия.
Что дальше?
По словам Эрика Смита, проект остается в рамках бюджета. Пока что все идет по плану и нет никаких препятствий, которые могли бы помешать запуску телескопа в октябре 2018 года. Единственная обнаруженная проблема — вибрационные аномалии — уже близка к разрешению, специалисты активно работают над тем, чтобы провести финальную локализацию проблемы и избавиться от нее. Но, конечно, сложности еще могут возникнуть. «Сейчас мы на той стадии программы, когда мы сталкиваемся с новыми вызовами, отличными от тех проблем, которые возникали до настоящего момента», — говорит Смит. Но, в тоже время, он уверен в силах команды: «Когда возникают проблемы, я уверен в том, что команда может решить их».